京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用大数据来提升法律执行力
在时代快速发展的今天,很多行业开始看到通过分析、可视化的方法处理那些不断更新的数据,可以得到现实的利益。与此同时,相对而言较为保守的行业也渐渐开始觉醒,并在大数据的浪潮中寻找属于自己的方向。其中一个典型的行业为法律行业,例如:司法机关、律师事务所等。
但是现在法律行业在面对大数据的时还存在着很多问题:法院和律师事务所可以在大数据中得到什么?大数据如何帮助法院克服常见的程序性问题,例如业务负担过重、时间延误和成本过高?如何处理实验中的敏感性数据?法律执行中的大数据的内在意义是什么?对于法律行业来说,大数据是一个新的挑战并存在着很多问题,不过现在已经有一些好的例子表现出大数据对于法律行业的积极作用。那么现在就让我们来深入探讨一下这个问题。
信息周刊早期曾对来自亚特兰大的精品律师事务所“Thomas Horstemeyer”作为案例进行解读。此律师事务所有60名雇员并实行一些拥有自己知识产权的方法。与传统律师事务所不同,他们并没有将所有案件进行档案纸质收藏,而是将这些信息全部上传到私人云端中。他们在事务所中拥有很多储存空间网络(这些空间有十几TB那么大),并在这些数据的基础上进行数据分析、挖掘,同时他们还以此为基础开发了一个纯粹的虚拟环境,并升级防火墙、增加负载均衡、虚拟化服务器以及使用网络语音(VoIP)取代了电话系统。此外,因为不再需要使用旧的方法来保存文件,律师事务所节省了很大的一笔开支。
尽管这个案例看起来和大数据并没有关系,但是这对于那些拥有大量纸质文件的法律行业来说只是一个开始。当所有档案数据化后,需要做的就是对可利用的数据进行更快的分析,并可以在旧的案件记录中更快更好的挖掘出可以信息以进行二次利用。
大数据在法律行业中有着很多的应用。首先,它可以大大的节约成本并提高执行效率。当大量的案件记录以及相关数据得到直接快速的分析时,这些案件中的一些相关点便可以发现。为了达到此目的,那么律师事务所需要学会如何正确的收集、储存、编目和组织所有的数据,这是律师事务所可以在这些数据中得到利益的保证。如今,计算机的强大计算能力以及低廉的成本使我们可以保存我们想要的任何数据。这可能导致在未来某些情况下产生一些完全新的见解,并让法官和检察官回答现在完全无法回答的问题。
律师事务所可以在一些情况下使用特定的算法进行预测,即基于以往的相似案件的法律处理结果,来预测现在新的案件可能会得到怎么的处理。在加利福利亚州的一个小型的律师事务所“Dummit, Buchholz & Trapp”就是使用经过LexisNexis改进的算法技术,可以在20分钟内预测某一案件是否值得受理,而同样的事情,在以前却需要20天。
第二,大数据可以增加法律行业的透明度,这让法官和客户都可以从中受益。例如一个名为TyMetrix LegalView Analytics的工具可以大量收集由法律支出的数十亿百亿费用产生的发票。这样,对于律师事务所来说,可以简单的让自己与行业标准进行比较,从而为某项业务设定合适的价格。另一方面,诸如Sky Analytics之类的工具可以帮助公司减少法律支出,控制司法成本,这些工具可以帮助公司建立法律支出上的一种无与伦比的宏观视角,并在节省司法支出方面尽可能的提出具体的建议。
同样,消费者也会因为法律行业数据的公开民主透明化而获利。一款名为RateDriver的应用程序,可以让美国51个州的使用者迅速确定自己需要为律师所付出的费用。
第三点,大数据可以成为法庭上的一种新的证据。许多美国案例中表现出,由公共数据集收集分析得到的结果在一定情况下可以被认定为证据。作为一个数据驱动行业,法律行业的大部分数据依然保存在线下,保存在纸张中,但是现在这个行业正在稳步向信息时代迈进,并利用其中大量的新机遇改善自己的工作。当数据全部得以数字化时,那么对于法律行业就可以很容易的联系到其他的公开数据,并以此产生一些新的碰撞。正如数据公司LexisNexis的首席构架师Ian Koenig所说的那样:“这可以让我在海底中捞到属于我的那根针”。
最后一点,大数据也开始出现在了律师事务所的HR部门。正如早期的一则新闻中讨论的那样,大数据可以让人力资源经理整合潜在新雇员的所有信息数据,并估计其在某次评估中的可能表现,这可以帮助这些事务所找到那些真正符合他们要求的雇员。
现在的市场上已经出现了一些完全专注于法律行业的大数据开发小组。其中一个典型的例子是总部位于圣路易斯的Juristat,现在其在美国法律行业中起着特殊的意义。Juristat为法官和律师事务所提供可操作的分析,并帮助他们优化诉讼策略、营销政策以及内部运作。他们甚至可以做的更多,例如Juristat的一项工具可以预测出流感的爆发对陪审团的裁决产生怎样的影响。
大数据在法律行业还处于刚刚起步的阶段,还有很长的道路要走。律师事务所等法律行业在处理问题的时候往往需要较为可信的信息,但是对于信息数字化中存在的隐私以及安全问题还亟待解决,所以很多人对于将他们的信息进行共享还处于观望甚至排斥的态度。对于法律行业来讲,大数据的兴起既是危机也是挑战,但是说到底,前进的唯一道理还是信息的数字化。一本名为《法律行业中的大数据》的书为法律行业起一个很好的头,它对大数据如何对法律行业产生影响进行了由内而外的深入解读并提供了实际可行的建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09