
企业大数据创新不容忽视的五大重要趋势
“大数据”已经不仅仅是一个时髦用语,利用大数据分析正在成为越来越现实的问题,甚至IBM都已经宣布投入10亿美金发展PowerLinux系统以支持其大数据战略。
从企业规模来看,利用大数据更有优势的是大型企业。根据研究机构Forrester Research对大量大型企业的调查数据显示,平均每家企业产生的数据总量约为非结构化数据50TB、半结构化数据2TB、结构化数据12TB。
但Forrester Research首席分析师Bryan Wang同时指出,大型企业大数据综合利用率仅为12%左右,“企业花了大量的金钱在存储上”——而不是分析。
目前使用大数据技术的企业占比约为20%,另有37%企业正在筹划大数据项目,希望通过大数据分析的威力获得更高的企业洞察。那么,大数据在大型企业重要项目应当如何应用呢?这里是大型企业大数据创新的五大方向。
1 ) 混合数据云。混合数据云是一个值得强调的话题,因为大型企业不可能放弃现有的结构化的数据基础设施。从Oracle,IBM和微软的系统的结构化数据正在支撑大多数大公司的运作。数据基础设施技术执行的目标是将这些现有的系统融入混合系统,同时吸收非结构化的数据和外部数据。
然而,传统的厂商要做到这一点可能不太容易。虽然现有的系统将保持,但那些传统厂商的技术可能局限在现有的项目,而企业新的投资更可能流向新的供应商和新的平台。
StubHub公司有25种结构化和非结构化数据源的数据网络。StubHub首席数据架构师Sastry Malladi表示,使用开源产品对于避免专有架构的锁定非常重要。“眼下最重要的创新,是如何创建一个混合的数据系统,”Malladi说。
2 ) 移动性推动大数据投资。移动平台和它们的位置、通信和便携性提出了一种客户平台客户定制的大数据创新。在线健康网站MapMy Fitness开始记录用户的运行路线,并已经扩展到各种各样的健身活动,以及个人健康监测。
MapMy Fitness副总裁Matt McLure已经看到公司增长到19万用户,并开发出一种混合私有云和公共云的基础设施,以支持用户的行为,如新增的夏季骑自行车的人和健身爱好者。“我们是在健康和关连健身生态系统的中心。”McLure说。额外的健康和健身监控相关的扩展要求,驱动该公司使用像 Facebook和谷歌等开发的数据技术。
3 ) 大数据可以围绕和增强现有的应用程序。StubHub开始只作为一个体育和娱乐项目的票券交易平台。但该公司目前正在采取一个更广泛的角度,一个项目周围的所有活动,包括社会评论,住宿,餐饮和交通服务。这些社交网络服务驱动捕获、分析大量的数据的混合模型,并驱动推荐引擎。传统的交易系统的设计根本就没有考虑这种类型的用户输入。
4 ) 物联网将让当前的大数据项目看起来像小东西(small stuff)。美国商业智能厂商SAS高级主管Paul Bachteal指出,当你开始考虑将所有的数据引入组织,将物联网从概念变成现实,构建采集,存储,分析和创建预测分析的系统,需要的技能是供不应求的,客户和供应商将不得不展开员工技能的培训工作。
Bachteal以铁路机车为例,表示一旦配备传感器并连接到一个数据分析系统,客户将能够更准确地预测部件的磨损,从而可以防止设备故障。
5 ) 大创新来到数据频谱的前端。沃尔玛正在考虑使用crowd sourcing(众包)来设置产品价格和选择产品说明配图。沃尔玛实验室高级工程总监Digvijay Lamba表示,在决策过程的前端使用技术如crowd sourcing,完成大数据的频谱。
现有的大数据系统擅长于分析巨大的数据池,但只有在数据进入该系统的时候。crowd sourcing代表了一种方式,把额外的数据添加到大数据流程的前端,利于提高分析结果。Lamba说:“我们需要扩展系统的前端。”
大数据已经不仅仅是一个流行的词汇,但创建大数据系统需要思考决策系统的新途径,这现在刚刚进入市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10