京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析5种入门方法,你get了么
2015年,对于数据行业来说,确实有各种质的飞跃,各种白皮书,各种以数据命名的新兴职业呈现百花齐放的局面。数据这个词被用得越来越多,热度越来越大。不可置否的是数据在各行各业显现出了不同凡响的威能,最先实现价值一般都在电子商务行业。
电商行业能直接反馈到的数据量是最全最多的,各种行为都会有所记录。也许卖家们手头的收据还达不到大而全的程度,但是利用这些数据还是可以做一些力所能及的分析,使得整个运营过程更科学、更准确,来减少在操作过程中的一些失误,避免损失。也可以发现一些原本没有发现的信息,提供更多的空间所在,说大一点发现蓝海市场的存在,说通俗些让赚钱都显得高大上。
很多文章中提到过数据分析入门有5种思维,对于文章不过多的评论什么,只能先这么说,这5种思维不能说错,可能对于国内现状来说,更能够被广大的人民群众所接受,也确实比较简单实用。但是数据分析的5种思维这样的说法,这是完全不考虑算法的一个情况下,不严谨的说,数据分析有这么5种简单的思考方向。这样的一个说法应该会比较合理一点,因为这就确实不从任何数学学术意义上的程度去说这个事。
如果卖家确实感觉刚开始学习数据分析无从下手的话,可以先往这方面考虑。
第一种,叫做对照,俗称对比。
先看看第一幅图:
不知道卖家们对于看到第一幅图有什么感觉,先别急,接下来看第二幅图:
可能第二幅图就明白了很多,这就是一个对比,有个参照。否则单一的看看一个内容,根本不知道在做什么。
第二种叫拆分:这种方法运用在寻找问题的时候比较多,还是看图:
比如当流量出现了问题,那就要一层一层往下剥析问题具体是出现在了底下的哪个点。
第三种跟第四种可以和起来讲,就是降维跟升维。比如看到这样的数据:
上图一眼望去,就觉得密密麻麻,完全都不知道看什么。这个时候,在分析的思维上,就要想目的到底是什么,哪些数据是有用的,然后把那些不必要的先删除掉,结果就清楚很多。而升维就刚好相反,就可以看看是否数据量够,是否需要增加一些维度。后面文章会详细讲解。
第五种思维,叫做假说。这种说法更熟知一点的叫做假设,是一种逆向的思维,最常用到的地方是制定计划的时候,从结果看原因。比如目标是卡排名卡到第几位,那么就需要去想,要达到这种结果,需要什么样的一个条件。一步一步反向的去制定,这样不会偏离达到目标的方向。
真正的数据分析是一个很大的内容,如果涉及到算法,不管是数据挖掘方面还是统计分析方面的其中某一个,都有上百种细分的算法,各种流派、验证方式,后面会一一展开。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30