京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,电商如何用数据创造价值
从去年起,大数据(big data)一词越来越多地被提及。在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉,有人认为“大数据”时代已经降临。
事实上,现在一般的大型企业都存储了200TB(万亿字节)以上的数据,企业拥有绰绰有余的数据来了解谁在何时、何处、以何种方式购买了他们的产品。但是,如果企业能够了解消费者背后的消费动机,即为什么会买或者为什么不买,就可以更好的掌握客户。而这类数据被称为大数据,它们来自于诸如微博、视频、网贴及其他非结构化数据源。
英特尔公司的创始人之一戈登.摩尔在1965年发现了一个惊人的趋势,即集成电路芯片上所集成的电路的数目每隔18个月就翻一番,该发现被业界誉为摩尔定律。后来也有被描述为微处理器的性能每隔18个月提高一倍,或价格下降一半;或用同等价钱能买到的电脑性能(速度和储存量)每隔18个月翻一番,等等。
40多年在人类沧海桑田的历史上仅仅是弹指一挥间,摩尔定律却见证了电脑的数据处理和储存能力从K(Kilobyte)到M(Megabyte)到G(Gigabyte)到T(Terabyte)的变迁。尤其是互联网的出现,让我们急速地跨入了大数据(Big Data)时代。其主要的驱动力有以下几点:
1、随着社会经济的发展和个人收入的增加,人们的个性化需求开始凸显。而企业要去高效地满足这些个性化的需求则需要大量的数据支持。
2、互联网的出现和相关技术的发展让海量数据的收集和分析成为可能。互联网的特征又导致这些数据能够被高速度和大容量的传播。
3、互联网引入了由用户产生数据的模式。这种模式的特征是多源头,低成本,更及时。当然,这些数据的真实性和可靠性需要被核证。
4、构建在互联网基础上的电子商务和传统零售比较的优势之一就是数据的可获得性。电子商务可以实时得到顾客的来访源头,在网站内的搜索、收藏、购买行为,以及购买的商品间的关联性。这些数据可以帮助企业更精准的为顾客服务。
5、人工智能、信息系统和决策科学的发展促进了多种分析方法及工具的推动,包括数据挖掘,顾客行为模型,决策支持,等等。
数据(Data)是原始和零散的,经过过滤和组织后成为信息(Information),将相关联的信息整合和有效的呈现则成为知识(Knowledge),对知识的深层领悟而升华到理解事物的本质并可以举一反三则为智慧(Wisdom)。所以数据是源头,是决策和价值创造的基石。
数据的应用大致分以下几个步骤:a.数据采集、核实与过滤;b.在数据仓库内的分类和储存;c.数据挖掘以找到数据所隐含的规律和数据间的关联;d.数据模型建立和参数调整;e.基于数据的应用开发和决策支持。下面用实例来说明。
1、美国医药网站WebMD根据怀孕的女性用户填写的受孕信息定期给用户寄EDM,提醒母亲在该时间点的注意事项,需要摄入的营养,产前的生理变化和要做好的思想准备,产后的恢复,宝宝的育养和健康,等等。
2、1号店利用对大数据的分析给顾客发送个性化EDM。若顾客曾经在1号店网站上查看过一个商品而没有购买,则有几种可能:a.缺货,b.价格不合适,c.不是想要的品牌或不是想要的商品,d.只是看看? 若在顾客查看时该商品缺货则到货时立即通知顾客;若当时有货而顾客没有买就很有可能是因为价格引起的,则在该商品降价促销时通知顾客;同时,在引入和该商品相类似或相关联的商品时温馨告知顾客。另外,通过挖掘顾客的周期性购买习惯,在临近顾客的购买周期时适时的提醒顾客。
3、淘宝在2012年推出了淘宝时光机,该应用通过分析顾客自注册为用户以来的行为,用幽默生动的语言告知顾客淘宝的成长,和该用户相类似喜好的其他用户的统计行为,对该顾客经过分析后对其喜好的了解和对其行为的预测,等等。用生动的文稿和个性化的数据、拉近了和顾客的距离。
4、Google的Adsense对顾客的搜索过程和其对各网站的关注度进行数据挖掘,并在其联盟内的网站追踪顾客的去向,在联盟网站上推出和顾客潜在兴趣相匹配的广告,精准化营销,提高转化率。
5、Amazon近几年推出了FDFC(Forward Deployed Fulfillment Center)的概念,以加快对顾客配送的速度。Amazon的订单履行中心分两个层级:FC和FDFC,其中FC品种更齐全,而FDFC在物理位置上更靠近目标市场,但品种重点容纳针对目标市场的热销商品,顾客的大部分需求可以通过FDFC来满足,不能满足的长尾商品则由FC来满足。这样顾客急需的商品多数可以通过FDFC以更快捷和低成本的物流来完成。由于热销商品是随着时间和季节而改变的,故将什么商品储存在FDFC的决策是动态调整的,而此决策的依据就是对顾客需求的分析和预测。
各种应用的例子难以穷举,但趋势十分清楚:大数据的应用价值和潜力不再被人低估。但并不是所有企业都能在大数据这个金矿里真正挖到金子的。只有那些有远见有视野,重视系统,舍得投入,吸引了优秀的分析和系统人才的企业才会有所斩获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06