京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在未来将进一步体现价值
日常生活中,能够制造出数据的领域遍布各个行业,商务贸易、在线视频图像资料、社交网络媒体信息、企业信息管理以及电子政务等等,都会涉及到大数据。
而在过去的三年里,所产生的数据量比以往四万年的数据量还要多,大数据时代的来临已经毋庸置疑。这一变化所带来的挑战是成功的企业在未来发展过程中必须要面对的。只有那些能够运用这些新数据型态的企业,方能打造可持续的重要竞争优势。
数据要灵活、数据要迅速
Guess拥有多条产品线,但如何在众多服装产品之中选定主推款式或者配件风格却是左右销售走势的关键性因素。为了做出正确的决策,数据分析机制需要对电子表格中的所有数据进行查询。整个过程花费了数百小时,公司高级副总裁兼CIOMichaelRelich也由于大量查询失败而不得不面对着响个没完的电话。在了解到Guess如何处理主数据之后,Relich与他的技术团队开发出一套二维码方案,顾客可以利用iPad对其扫描并在屏幕中查看关于对应服装的详细信息。
这个项目并非什么策略规划或者长期移动措施的一部分。恰恰相反,它完全源自顾客们的实际需求。事实上目前大多数大数据分析项目都直接受到客户的推动。在半导体芯片制造商博通公司高级副总裁兼CIOWilliamMillerJr.看来,这意味着技术人员应该将眼光放在需求之前而不能仅仅一路追赶需求的脚步。
公司的工程师们还组建了私有云环境,这保证工作人员能够在一天的任何时段(包括夜晚)灵活开展工作。博通公司日前刚刚收购了一家新公司,外来员工们在周一上班时赫然发现自己熟悉的方案与工具仅仅用了一个周末就完全整合入博通的工作环境当中——这正是灵活性的突出体现。
数据可视化满足切实需求
要想让大数据方面的投资收到成效,我们必须保证由分析工具生成的信息以可视化形式呈现在工作人员面前。过去,利宝互助国际保险集团每个季度会收到一份长达80页的运营报告,高管团队则需要花费数小时时间来阅读并了解其中的内容。
将这份长篇大论转化为一张包含关键性绩效指标的列表需要分步进行,Lefebvre解释称。首先,决定需要为哪些关键性问题找出答案。然后,创建一系列分组报告。最后,进行数据可视化处理。整个过程意在“通过整理让数据满足切实需求。”Lefebvre还补充称,为了让报告真正能够指导工作、转化过程往往要花一个季度以上的时间。
让人们使用数据仓库是个巨大的难题,尤其是在零售行业这一问题就显得尤为突出,因为买家往往拥有非常强烈的直觉判断。Guess公司的解决方案会首先将有价值数据经过格式转换后交付给黑莓平台,接着由以Flash支持的信息面板对其进行可视化处理,最终再将结果传递至iPad应用程序。将每家零售店的销售数据汇总起来能效提高决策制定的速度、同时减少规划会议的次数。
实时数据可视化则并不局限于数字本身。利宝保险公司的现场风险工程师们能够将实际情况拍成照片并上传至数据库端。在这里,图片会再次接受保险费率工程师的检查。根据Lefebvre的说法,这种机制能让保费赔付工作的审核周期由过去的几天缩短为现在的几小时。
有人预测,在未来五年里,大数据将逐渐成为越来越多CIO工作中的一部分。仅对原有价值链各个环节的数据进行分析,已经不能满足需求,他们需要借助大数据战略打破数据边界,了解更为全面的运营及运营环境的全景图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16