京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在未来将进一步体现价值
日常生活中,能够制造出数据的领域遍布各个行业,商务贸易、在线视频图像资料、社交网络媒体信息、企业信息管理以及电子政务等等,都会涉及到大数据。
而在过去的三年里,所产生的数据量比以往四万年的数据量还要多,大数据时代的来临已经毋庸置疑。这一变化所带来的挑战是成功的企业在未来发展过程中必须要面对的。只有那些能够运用这些新数据型态的企业,方能打造可持续的重要竞争优势。
数据要灵活、数据要迅速
Guess拥有多条产品线,但如何在众多服装产品之中选定主推款式或者配件风格却是左右销售走势的关键性因素。为了做出正确的决策,数据分析机制需要对电子表格中的所有数据进行查询。整个过程花费了数百小时,公司高级副总裁兼CIOMichaelRelich也由于大量查询失败而不得不面对着响个没完的电话。在了解到Guess如何处理主数据之后,Relich与他的技术团队开发出一套二维码方案,顾客可以利用iPad对其扫描并在屏幕中查看关于对应服装的详细信息。
这个项目并非什么策略规划或者长期移动措施的一部分。恰恰相反,它完全源自顾客们的实际需求。事实上目前大多数大数据分析项目都直接受到客户的推动。在半导体芯片制造商博通公司高级副总裁兼CIOWilliamMillerJr.看来,这意味着技术人员应该将眼光放在需求之前而不能仅仅一路追赶需求的脚步。
公司的工程师们还组建了私有云环境,这保证工作人员能够在一天的任何时段(包括夜晚)灵活开展工作。博通公司日前刚刚收购了一家新公司,外来员工们在周一上班时赫然发现自己熟悉的方案与工具仅仅用了一个周末就完全整合入博通的工作环境当中——这正是灵活性的突出体现。
数据可视化满足切实需求
要想让大数据方面的投资收到成效,我们必须保证由分析工具生成的信息以可视化形式呈现在工作人员面前。过去,利宝互助国际保险集团每个季度会收到一份长达80页的运营报告,高管团队则需要花费数小时时间来阅读并了解其中的内容。
将这份长篇大论转化为一张包含关键性绩效指标的列表需要分步进行,Lefebvre解释称。首先,决定需要为哪些关键性问题找出答案。然后,创建一系列分组报告。最后,进行数据可视化处理。整个过程意在“通过整理让数据满足切实需求。”Lefebvre还补充称,为了让报告真正能够指导工作、转化过程往往要花一个季度以上的时间。
让人们使用数据仓库是个巨大的难题,尤其是在零售行业这一问题就显得尤为突出,因为买家往往拥有非常强烈的直觉判断。Guess公司的解决方案会首先将有价值数据经过格式转换后交付给黑莓平台,接着由以Flash支持的信息面板对其进行可视化处理,最终再将结果传递至iPad应用程序。将每家零售店的销售数据汇总起来能效提高决策制定的速度、同时减少规划会议的次数。
实时数据可视化则并不局限于数字本身。利宝保险公司的现场风险工程师们能够将实际情况拍成照片并上传至数据库端。在这里,图片会再次接受保险费率工程师的检查。根据Lefebvre的说法,这种机制能让保费赔付工作的审核周期由过去的几天缩短为现在的几小时。
有人预测,在未来五年里,大数据将逐渐成为越来越多CIO工作中的一部分。仅对原有价值链各个环节的数据进行分析,已经不能满足需求,他们需要借助大数据战略打破数据边界,了解更为全面的运营及运营环境的全景图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01