
七步为营,让你明白大数据整合营销
对很多企业来说,大数据的概念已不陌生,但如何在营销中应用大数据仍是说易行难。其实,作为大数据最先落地也最先体现出价值的应用领域,网络营销的数据化之路已有成熟的经验及操作模式。
一、获取全网用户数据首先需要明确的是,仅有企业数据,即使规模再大,也只是孤岛数据。在收集、打通企业内部的用户数据时,还要与互联网数据统合,才能准确掌握用户在站内站外的全方位的行为,使数据在营销中体现应有的价值。在数据采集阶段,建议在搜集自身各方面数据形成DMP数据平台后,还要与第三方公用DMP数据对接,获取更多的目标人群数据,形成基于全网的数据管理系统。
二、让数据看得懂采集来的原始数据难以懂读,因此还需要进行集中化、结构化、标准化处理,让“天书”变成看得懂的信息。这个过程中,需要建立、应用各类“库”,如行业知识库(包括产品知识库、关键词库、域名知识库、内容知识库);基于“数据格式化处理库”衍生出来的底层裤(用户行为库、URL标签库);中层库(用户标签库、流量统计、舆情评估);用户共性库等。
三、分析用户特征及偏好将第一方标签与第三方标签相结合,按不同的评估维度和模型算法,通过聚类方式将具有相同特征的用户划分成不同属性的用户族群,对用户的静态信息(性别、年龄、职业、学历、关联人群、生活习性等)、动态信息(资讯偏好、娱乐偏好、健康状况、商品偏好等)、实时信息(地理位置、相关事件、相关服务、相关消费、相关动作)分别描述,形成网站用户分群画像系统。
四、制定渠道和创意策略根据对目标群体的特征测量和分析结果,在营销计划实施前,对营销投放策略进行评估和优化。如选择更适合的用户群体,匹配适当的媒体,制定性价比及效率更高的渠道组合,根据用户特征制定内容策略,从而提高目标用户人群的转化率。
五、提升营销效率在投放过程中,仍需不断回收、分析数据,并利用统计系统对不同渠道的类型、时段、地域、位置等价值进行分析,对用户转化率的贡献程度进行评估,在营销过程中进行实时策略调整。对渠道依存关系进行分析:分析推广渠道的构成类型与网站频道、栏目的关联程度(路径图形化+表格展示);对流量来源进行分析:分析网站各种推广渠道类型的对网站流量的贡献程度;对用户特征及用户转化进行分析:分析各个类型的推广渠道所带来的用户特征、各推广渠道类型转化效率、效果和ROI。
六、营销效果评估、管理利用渠道管理和宣传制作工具,利用数据进行可视化的品牌宣传、事件传播和产品,制作数据图形化工具,自动生成特定的市场宣传报告,对特定宣传目的报告进行管理。大数据魔镜将是不错的选择。
七、创建精准投放系统对于有意领先精准营销的企业来说,则可更进一步,整合内部数据资源,补充第三方站外数据资源,进而建立广告精准投放系统,对营销全程进行精细管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04