
用R语言进行数据分析:命令行编辑器
如果你的 UNIX 系统已经安装了 GNU readline 库, 那么 R 配置中允许在 UNIX 下编译 R 代码,调用内置的 命令行编辑器,编辑和重新调用以前用过的命令。 注意:该附录提到的接口不是用于 UNIX 系统的 GNOME接口,而仅仅用于标准的命令行 接口。
如果启动时设置了参数 –no-readline (使用 ESS 时非常有用), 则该命令不可用。
Windows 版本的 R 有简单的命令行编辑功能; 见 GUI 界面的 Help 菜单下的 Console,已经 描述 Rterm.exe 的命令行操作的 文件 README.Rterm。
当使用 readline 写 R 命令时,下面 描述的函数可用。
这些函数常常是控制字符或者是元字符(Meta character)。控制字符,如 Control-m 表示同时按住 <CTRL> 和 <m> 键,并且以 C-m 形式表示。元字符,如 Meta-b 表示同时按住 <META>和 <b> 键,下面以 M-b 形式记录。如果你的终端没有 <META> 键,你可以用ESC 开始的两个字符序列 键入元字符。因此对于 M-b,你可以键入 <ESC><b>。ESC 字符序列在 有真正元键的终端也是允许的。注意这种情况 对元字符有特殊意义的。
R 保存你键入的命令行的历史, 包括错误的命令。历史文件中的命令可以被重新调用,修改 以新的命令的形式重新提交。在 Emacs-形式的命令行编辑中,任何直接的输入 都会将字符直接插入到你所编辑的命令中, 并且取代光标右侧的字符。 vi 输入模式是通过 M-i 或 M-a 启动,字符可以被键入并且通过键入 <ESC> 结束输入模式。
任何时候键入 <RET> 都会使得命令 重新被提交。
其他的编辑命令在下面的表中有所总结。
C-p跳到前一个命令(回溯历史文件)。C-n跳到下一个命令(前溯历史文件)。C-r text搜索含有字符串 text 的最后一个命令。
在大多数终端,你可以使用上下键分别代替 C-p 和 C-n。
C-a回到命令行开头。C-e跳到命令行结束。M-b回溯一个单词。M-f前溯一个单词。C-b回溯一个字符。C-f前溯一个字符。
在大多数终端,你可以使用左右键分别代替 C-b 和 C-f。
text在光标处插入文本 text。C-f text在光标后插入 text。<DEL>删除前面的字符(光标左侧)。C-d删除光标处的字符。M-d删除光标处单词以外的部分,并且“保存”它们。C-k删除光标到命令结束的部分,并且“保存”它们。C-y插入最后“保存”的文本。C-t转置光标处的文本。M-l将字符转换成小写字符。M-c将单词转换成大写。<RET>重新向 R 提交命令。
最后的 <RET> 命令将会终止命令行编辑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17