京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析之优化店铺的分析模型方案
您是哪一类店家?
发现一个问题,市面上被称作“数据分析”的工具很多,很多人是为了数据分析而买了这样一个软件,结果常常是用了几天就放在一边了。
各种数据 看不懂 有木有 !
数据的三个层次:
数据统计:将大量原始数据呈现在我们面前。
数据分析:通过多原始数据的分析提炼,对现状进行评估比较,发现问题解决问题。
数据模型:也就是数据挖掘,数据建模,利用数学函数寻找数据中的内在规律,进行预测。
店家的四种类型:
您是直觉型店家?还是分析型店家?
以下是我参考使用过的一个最基本的解决方案模型。分享之,
让店铺提升效率只需四步
任何一个可靠的决策的诞生都是有一个过程的:
第一步 确定:确定想要解决的问题是最首要的任务。对于大部分的店铺来说,最想要解决的问题就是:我们要提升店铺销售量。
第二步 分解:从逻辑分析的角度讲:将确定的问题分解成更具体的小问题是最有效的方法。会影响店铺销售量的因素有很多:店铺属性(级别,装修),流量,流量转化率,回头客,客服,售后服务,产品本身属性(价格,产品图片),物流成本,物流质量等等。
第三步 评估:用你亮晶晶的大眼睛发现有意思的变量,对这些关键变量进行逐一的分析,比较,假设,评估。对于数据的动态分析和静态比较等。
第四步 决策:得出最终决策。比如,将那个销量提升的产品放到首页,链接相关其他产品,这样促进了关联销售和首页转化率。
这样的决策是根据数据分析得来的。数据的不稳定性告诉我们要进行周期性的数据分析。
关于寻找潜力爆款的简单分析过程
下面这家店是一家运动品商店,先看数据吧!
开始分析
确定:增加销售额
分解:
1、店铺首页成交比例占全店比例较小
2、成交金额与拍下金额存在很大差距
3、热卖宝贝与人气宝贝不一致,有打造爆款的潜力
评估:
思路
首页转化率低 --因为-- 客户无法在首页马上找到想要的宝贝
客户拍下后不成交 -- 因为-- 价格,客服,关联销售
热卖宝贝与人气宝贝不一致 -- 因为 -- 没有好好利用流量或者转化率高的商品却没有流量优化
所以 --- 优化首页,确定潜力宝贝打造爆款,以单品引来大批流量带动全店销售额增加
观察下面的两个图,很明显,流量最大的宝贝300+,首页上并没有显示出来这一优势,成交宝贝只有一个

然后我们分析一下热卖宝贝和人气宝贝到底是谁出了问题?
按照下面的方法把这两个宝贝进行个性化分析
很快,我们发现者两种宝贝哪一个的表现更优了,第一个宝贝就是我们想找的潜力宝贝!我们可以优化他的各种属性,然后等着流量滚滚来吧!
总结
1 每个行业都有各自行业的特点,了解细分行业的市场份额,了解你的竞争对手是谁,了解对手的销售情况,了解客户的相关数据。数据就是流量,流量带动销量,销量提升效益!
2 在进行决策的过程中,将问题分解的越细小,就越容易接近最优决策。
3 知道的相关信息越多,了解的越具体,做出的假设越少,对自己的决策就会越有把握。所以数据来源和数据展现的方式也很关键。
4 模型只是参考,在运用的时候要灵活,不要太纠结于流程。我不保证这个模型可以适用于任何问题,比如某些奇葩坑爹超级无敌变态的恶心问题,但是一般的问题还是可以应付的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29