京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据狂想:你必须把握的未来七大趋势
当你在百度的搜索框中输入:“如果南海爆发军事冲突,哪几只 A 股可从中获益?”搜索结果页将会在 0.01 秒内返回一串股票代码。
这并非科幻,而是触手可及的现实。南海战事未必会爆发(事实上,它的概率也是可以计算的),而那几只股票的推荐却很可能是真的。搜索引擎并非基于对公司经营状况的研究或财务报表的分析得出结论,而是基于掌握了股票市场与历史事件的所有数据,并从中“发现”其相关性。
这只是微不足道的冰山一角。大数据曾经像是蛮荒的西部,如今一些庞大而坚固的底层架构正在以令人惊叹的速度搭建起来,而当轨道、工厂、钻井、码头、舞台一切就绪之后,全新的时代将徐徐拉开大幕。
如果你错过了过去二十年间风起云涌的互联网大潮,那么请把握以下七大趋势,它们很可能将在下个二十年内发生:
传感器像空气无处不在
技术的突破将使传感器体积微型化,它将出现在生产生活的每一个角落,甚至以靶向缓释胶囊形态进入人体内部,监测化学环境及组织器官的细微变化。
成本降低后,传感器不再需要回收,而像月抛隐形眼镜般一次性使用,完成使命后自动废弃,而新的传感器则源源不断地补充数据源;传感器节点数将达到万亿级别,其数据量将超过人类日常总传送数据量的百分之八十,新的低能耗无线通信标准诞生。
数据服务如水即开即用
Google、百度、亚马逊等巨头将建立起完善的大数据服务基础架构及商业化模式,从数据的存储、挖掘、管理、计算等方面提供一站式服务,将各行各业的数据孤岛打通互联。
在用户与数据服务商之间是算法提供商,他们雇佣专业领域的精英人才与数据科学家,通过数据挖掘的方式,寻找事物间的联系,如基因集与疾病的对应关系,大气状况如何影响农作物收成,以及某一款酒类广告如何带动避孕套的销售。
而用户(无论个人或组织)所需要做的便是像今天下载手机 App 一样,选择相应的数据服务端,付费,享受“N=All”的实时数据所带来的深刻洞察与行动指南。
大数据浪潮席卷全行业
个人的生活数据将被实时采集上传,饮食、健康、出行、家居、医疗、购物、社交,大数据服务将被广泛运用并对用户生活质量产生革命性的提升,一切服务都将以个性化的方式为每一个“你”量身定制,为每一个行为提供基于历史数据与实时动态所产生的智能决策。
在传统领域大数据同样将发挥巨大作用:帮助农业根据环境气候土壤作物状况进行超精细化耕作;在工业生产领域全盘把握供需平衡,挖掘创新增长点;交通领域实现智能辅助乃至无人驾驶,堵车与事故将成为历史;能源产业将实现精确预测及产量实时调控。
大数据将成为国家间竞合关系的最高依据,同时也是最高机密,针对数据中心及传感器集群的黑客事件层出不穷,数据战将成为战争的主要形式。
数据资产权及立法引发激辩
如 Alistair Croll 所说:数据驱动下的世界给人最大的威胁是道德方面。我们以共享资源的方式分担风险(如保险),我们越是能预测未来,我们越不愿意和别人分享。
个人数据资产所有权,属于个人或是公司?隐私的边界何在?当公共利益与个人隐私发生冲突时如何抉择?数据是否具有地域性,如何处理跨国存储及管理的数据服务案件,等等。技术的发展将会倒逼国际社会制定并完善相应法律,而跨国企业将在其中扮演主导作用。
反过来,法律的制定也将推动数据安全技术的进步,智能程序将能根据不同情境启用相应的隐私级别,隔绝数据采集的“私密空间”将成为新的服务热点。
人工智能全面渗透人类生活
从苹果的 Siri 到 Google 的机器翻译,再到百度的深度学习及“百度大脑”,商业与技术的频繁互动将极大提升人工智能的进化速度。机器将得以理解人类文字、语音、图像、动作甚至表情背后的微妙含义,并以大数据为支撑,为人类提供效率与个性兼备的决策与服务;
想象一次旅行,人工智能分析你以往出行记录以及近期生活轨迹,结合对各大旅游景点、交通状况、天气预测等数据分析,提供给你最贴合心意的目的地,规划好线路的无人驾驶车辆依照行程将你送至景点,并根据你的行程及时调配车辆接送。
所有的酒店、餐饮、服务都已经依照你的生活数据进行深度订制,机器甚至会提醒你将美好时刻记录下来,发送给相关好友,提升关系的亲密度。而你遇到的所有异国文字和语言,都将经由翻译器实时转化为你的母语。这只是诸多场景中较简单的一个切片。
结合人工智能的机器人技术将取代从事简单机械劳动的人类,以及部分服务性行业,劳动力过剩将成为突出社会问题。
由人工智能主导的娱乐产业将成为经济支柱,结合虚拟现实技术的沉浸式游戏了解每一个玩家的神经刺激模式,并能带来最极致的感官享受,电影《Her》中爱上程序的故事或将成为普遍现实。
社会关系面临全面变革
传统的劳动关系及组织形态将被打破,劳动者以液态形式自由流动结合,成为“液态公司”,通过大数据平台,将客户需求与人力资源进行精确匹配,个体能够最大限度地发挥潜能,同时打破地域、语言及文化的障碍,全球协作成为大趋势。
婚恋模式全面转型,个体可根据不同关系需要由大数据服务商进行精确匹配,确保身心、经济、价值观及生活方式上真正的“Match”,并订立有时效性的契约式关系。
传统家庭模式进入重塑阶段,人以群分变成人以“数”分,带有相似数据特征的群体会以类似公社形式聚居,以实现资源整合与生活方式上的高效和谐。
国际化大品牌以深度数据分析,聚集忠实核心用户群,并开发上下游生活方式产品服务,形成凝聚力极高的 “品牌部落”概念,人群甚至会以品牌作为图腾、姓氏或精神信仰。
人类文明进入全新纪元
科研领域由传统的“现象观察 – 理论假设 – 实践验证”范式,变迁为“数据挖掘 – 抽象模型 – 扩展应用”,由理念到实际应用的路径将被大大缩短,全面提升技术进步速度。
人从机械重复的低级劳动中被解放,投身更具价值的创造过程。大数据将帮助人类发现激发创造力与幸福感的有效机制,社会由物质文明进入灵性文明的新纪元。
人工智能将逐步理解并模仿人类情感,机器与人类的共生成为进化趋势,奇点降临。
当二十年后我们回首今天,这个被称为大数据元年的特殊时间点,许多事情已经悄悄地埋下伏笔:顶尖人工智能专家、Google大脑之父吴恩达加盟百度;Google低调收购大量机器人公司;微软发布虚拟个人助手Cortana,宣称正处于“人工智能的春天”。
当这几家掌握着全世界最丰富数据资源的科技巨头纷纷发力时,你便能闻到那一丝火药味儿,大数据时代的狂飙突进才刚刚拉开序幕。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06