
大数据分析师:未来5年最热门的职业
在美国,大数据分析师平均每年薪酬高达17.5万美元。大数据分析师将成为今后5 年最热门的职业。
尽管不少专家表示,美国的就业市场尚未完全恢复,但已出现一类行业,其在私营企业内所获得的薪酬比其它行业高出近70%。这一类行业被称为“数据分析”(Data Job)。
顾名思义,从事这一行业的人的共性是与数字打交道。因此,经济学家、会计、市场研究分析员,甚至化学家等,均可算为“数据分析”行业的从业者。
大数据分析师是做什么的?
阿里巴巴集团研究员薛贵荣就曾表示,“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
大数据是眼下非常时髦的热词,同时也催生出一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。
美国国家劳工统计局的数据显示,“数据分析师”是美国成长第二快的职业。劳工统计局的最新就业率报告预计该职业在2018年将有80万从业人员(增长53.4%)。
根据美国商务部发布的一项调研显示,在2013年,“数据分析”业在私营企业中所获得的平均时薪为40.3美元,比其它行业的平均时薪23.96美元要高出许多。
简单的来说,大数据时代的到来,标志着人类进入商务智能化时代。
数据分析师将成为今后5 年最热门的职业。
其特点是就业面广,行行需要,薪金高,职业稳定,而且越老分析手段越多越有经验而不会被淘汰,并且可以在家里办公。
随着大数据在中国国内的发展,大数据相关人才却出现了供不应求的状况,大数据分析师更是被媒体称为“未来最具发展潜力的职业之一”。
有媒体报道,在美国,大数据分析师平均每年薪酬高达17.5万美元,而中国国内顶尖互联网公司,大数据分析师的薪酬可能要比同一个级别的其他职位高20%至30%,且颇受企业重视。
当然,目前大数据在大型商家的应用,挑战依然很多。
虽然目前概念喊得很火,就目前阶段不是所有的大型综合体,大型商家具备数据意识和数据分析能力,以及目前数据量较少不具备太大的参考意义。
此外,仅仅是数据还解决不了问题,还需要懂运营、懂市场的企业参与,才能让数据的价值得到发挥。
尽管如此,具备强大的数据分析能力的大数据公司将会越来越受到商家的追捧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17