
有关大数据 你不一定知道的几个冷知识
大数据的隐秘魅力就在于,他比你都了解你。你以为你每次按下手机按键的动作都是一样的吗?哈哈图样图森破。
来自今日头条的技术副总裁杨震原告诉童鞋们,他们正在测试的“黑科技”,恰恰能从你点击按键的时间和手指面积,推测出你当时的情绪。你的漫不经心、愤怒或者感动,都能够成为后台为你推送何种消息的依据。未来,如下场景可期:
如果你正处在被女神甩掉的悲伤中,也许客户端会为你推送——搞基的一百种好处。如果你正处在领到本月工资飘飘欲仙的快乐中,也许客户端会为你推送——在北京月两万何时能买一个厕所?
那么这种“恰到好处“的情绪拿捏和大数据有什么关系呢?实际上对你情绪的推测是建立在对你多次正常点击的记录之上的。这种行为数据甚至在你还未意识到的时候,就“出卖”了你的情绪。
今日头条技术副总裁杨震原在分析一个按钮的平均触摸时间
你的“姿势”,才是真的大数据
银行每天的交易账目流水的统计数据,并不是大数据,而每个用户在拿号之后等待了多久才排到,有多少用户骂娘,有多少用户过于焦急愤而离去,这些真正的行为才是大数据。
杨震原又举了今日头条在应用中的另一个例子。
实际上,你在一篇文章的什么位置停留多久,然后划动了多远,在新的位置停留了多久,是否看了评论,看了几条评论,都可以按顺序被记录下来。接下来就是通过算法评估读者的兴趣所在。
CSDN创始人蒋涛也特别提到,美国电商平台Wish正是用大数据的方法,根据每个人的数据不同,“看人下菜碟”地推荐你可能喜欢的货品,三年时间已经发展成北美最大的电商之一。
所以,一个悲伤的消息是:未来如果你要隐藏自己的身份,不仅仅要变装易容伪造指纹,甚至连点击手机,查看文章的习惯都要改变了。
大数据就是:一个都不能少
如果要想知道有多大比例的人喜欢GV,那么只需要做好抽样调查就可以了,没有必要对所有人进行调查。但是如果你想要推销宅腐的周边智能硬件产品,则需要逐个排查每个人“独特”的兴趣爱好。
所有数据一个都不能少,这就是所谓的“全量加工”,这些数据的制造者正是各大厂商利润的源泉。
360商业产品首席架构师刘鹏是一名网红,他在很多场合都强调:全量加工才是大数据。他说,涉及到个性化推荐、计算广告、个人征信这些场景,大规模的计算就是无法避免的。
从技术角度来说,之所以大数据可以做到这么精准,也主要得益于技术的进步。感知设备被丰富地用在五花八门的硬件上,使得以前无法记录的数据,现在都可以被记录了。
大数据不应该给人用
大数据应该交给机器做决策,而不是交给人做决策。
这种洋溢着对人类深深不信任感的论断同样来自于刘鹏。在他眼中,大数据是为机器提供的食粮。而能够驾驭大数据的人类基本只有两种:数据科学家和统计工作者。
IT企业中养一群科学家的可能性为零。而人类的判断往往基于宏观、战略,不可能有精力做到“因事而异”。相比之下机器的判断比人类更加细致。比如为每个用户比如画像、贴标签。所以,要想把大数据利用透彻,愚蠢的人类还是暂时靠边站吧。
“有点错误”的大数据更好用
“数据”这两个字,天然给人一种完美而且精准的感觉。在这方面,大数据要挑战你的底线。作为数字广告领域的大牛,刘鹏强调,大数据可以存在半一致性这样模棱两可的属性。换句话说,允许数据错误和丢失。
纳尼?错误的数据也是好数据吗?没错。由于数据量巨大,而且分析半天往往没什么有用的收获(价值密度低),分析者往往需要选取一些特征数据做加工,而对于这些特征数据,也许还要简化之后再加工。所以最终大数据要达到的结果是难得糊涂,却一针见血。
所以,如果有人向喜爱人民网的你推荐草榴的时候,先不要发火,你可能只是大数据的一个错误罢了。
保险公司最喜欢和大数据在一起
如果你是一个鲁莽的人,最想知道这个情况的无疑是你的汽车保险公司,想必你的保费会居高不下;如果你是一个谨小慎微的人,最想知道的也是保险公司,因为它可以用打折的保费吸引你投保。
在你身上,甚至存在一个精确的“岀险率”数字。这个听上去很惊悚的数字恰恰是保险公司利润的来源。因为不掌握这样大数据的个人,是无法计算自己的岀险率的。保险公司恰恰利用这种信息不对称,给一个岀险率是万分之一的人开出了千分之一的保价,相当于赚了十倍的利润。
隐私问题要靠技术改进
数据比它看上去的样子更险恶,这是大数据业内人士的普遍共识。即使隐去了你的姓名电话等等敏感信息,只保留你和其他人联系的记录,熟悉你的人完全可以猜到你的身份。目前大数据的安全性,在他人的恶意之下,显得力不从心。
隐私问题,制度只能解决20分,剩下的80分要靠技术进步来解决。
刘鹏如是说。期待市场倒退到前大数据时代,似乎没有希望了。
如何精确统计出有多少人喜爱苍井空,有多少人喜欢武藤兰,但是又不泄露到底是谁喜欢苍老师,谁喜欢武老师,这是目前大数据的最前沿研究。
有关大数据的政策再严格,没有一套可靠的保密技术,数据的安全都是无从谈起的。隐私算法、数据脱敏、数据隔离。都是研究的方向。在此之前,各位的大数据还都在相对危险的状态。这也是为什么目前法律没有禁止数据买卖,而各大巨头却不敢将数据出售的原因。 当然,大数据库市场价目前比较低也是一个重要的原因。
SDCC,中国软件开发者大会。由全球最大中文IT社区CSDN于2007年创办,每年一届。主题是下一代软件开发技术趋势与对各行业的深刻影响,以谈干货实料著称。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04