京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小企业的大数据解决方案 做些大公司做不到的事
每个人都在利用大数据,但小公司如何操纵那些通常由大公司使用的大数据呢?
虽然大数据已是游戏规则颠覆者,但中小型企业基于一个主要的劣势没能搭上这班车。缺乏充分利用新式数据技术的资源,也就无缘实施最佳的广告和销售策略。工具和大数据人才是昂贵的。诸多障碍牵制了小企业拥有全面的大数据能力,然而,抛开这一点不谈,一个好消息是小企业实际上已经利用数据很多年了。
一个企业只有能力存储大量的信息与能够利用大数据之间有很大区别。大数据是把信息放在一起,并将过去不相连的点连接起来。这和经理与业主在作决定时经常使用的机制类似。新技术只是在更大规模上做这个事儿罢了。它允许用户从堆积如山的数据中提取信息——但小企业为了做出更好的决策并不需要PB级的数据。他们需要的是适当的工具,清晰的意图和正确的问题。
简单地说,小企业面临的第一关是大数据方面的开销。软件和工具的前期成本高(购置费),后期使用费用(雇人)也高。虽然大公司可能愿意购买最好的软件并聘请分析师搜寻数据黄金,然而这不是最具成本效益的战略。相反,小企业必须专注于精确定位哪些问题是他们想要解决的。不是跳进昂贵而且难以控制的数据湖泊,而是寻找一个值得解答的问题,并找到答案。在现实中,大数据的难点不只是技术或信息,还有逻辑和分析。你不需要高价工具或大牛团队。您需要结构化的、明智的计划和战略,以免随后陷入困境。
当你准备好时,试着咨询 IBM 的沃森分析(IBM’s Watson’s Analytics),谷歌分析(Google Analytics)或洞察力平方(Insight Squared)。
先别买Hadoop。有些轻量级的解决方案,成本较低,使用方便。事实上,如果一家公司一直在用分类帐格式 (Excel、 QuickBooks) 收集自己数据,那么他们应该已经有很多数据了。这些信息已经可以提供关于促销、营销活动以及销售的深层见解,拿它与外部数据比较亦将获得更多信息,然而前提是你要有正确的问题。社交媒体是一个重要的数据来源。社交数据可以帮助你洞察客户身上往往不明显的个人生活特征。除了更好地了解目标客户外,社交数据还能反应出什么原因导致网站访问量增加(或降低)——网友张贴了某类信息还是竞选之类的活动。评测民众的兴趣水平和情绪状况还可以成为竞选利器——在陷入困境前请教社交数据可能会得到一些真知灼见。
利用社交媒体数据就是要全面地360度地了解顾客。这些数据不仅包含位置和的采购清单,而是展现了一个标明兴趣、个人主张与喜好的血肉丰满的人物。深入分析社交数据可以获取更多信息,以减少客户流失率。
可以去查Hootsuite,33Acrossor,Presto,或者简单一点,用Facebook Insight 和Twitter Analytics。
大公司可能有钱,但他们缺乏迅速响应所需要的那种速度和敏捷。在实时变更和调整方面小公司做得更好(前提是要具备一些基础的软硬件)。一个大型公司可能需要首席执行官的多项批文以及一份白皮书才能推行变革,而小企业更容易在利用数据时发挥机智和直觉的作用。大数据可以洞察当前的趋势并预测,因而快速应变的能力至关重要。当趋势出现时,小企业反应迅速,及时变革,崭露头角。由此,大数据让更多中小企业成为弄潮儿,乃至潮流的缔造者。
响应问题时灵活性也至关重要。减少客户流失的关键是及时从负面数据中得到线索并予以响应。即使很小的投诉也会带来很大的负面影响。
寻找灵感?像Constant Contact和 Intuit Quickbooks 这样的工具可以帮助那些无法获取大量数据的小公司。通过比较行业内类似的数据集,小公司可以更好的认识其市场趋势。
大数据带来的惊喜之一是它影响团队成员的心理。一旦数据开始露脸,形成结论,并且实施落地,整个气氛都在改变。雇员 (和雇主)(凭借大数据)能够找到更清晰的路径,更好地了解客户,他们将更明白如何做好本职工作。一个有趣的研究是审视大数据如何改变一个小公司的思维模式和能力。以往企业主和经理凭借经验以及少量的用户信息做决定,如今更好的数据意味着更好的决策和更高的参与水平。 关于这项研究大家可以参考以下链接
一个重要的教训是要对数据有信心。尝试了解数据的含义是个好主意,然而数据不是万能的,比如并非总能探察到每个小细节的“why”和“how”,而且由数据揭露的事实并非总是不容置疑的。无论哪个市场、公司规模多大、甚至商业模式如何,大小企业都受惠于利用大数据。当然,首先要提出恰当的问题,并且打开思路。或许你要问该如何开始利用大数据?最好的启程可能只是Google Analytics和一大杯咖啡。
1、Apart from giving better insight into target customers, it also highlights what posts, information or campaigns are driving traffic up (or down)。这里drive traffic指网站流量,例如:drive traffic to my web site.( 想办法让流量流向我的网页)。Drive more traffic with our SEO recommendations.(我们的网络引擎优化的推荐配置可以帮助你引流) 8 Ways to Drive Traffic to Your Site With Google+。
2、Triggering and partaking in deeper conversations leads to more information and less churn.这里的churn指客户流失。参见churn rate。
3、Hootsuite,国外一个社交媒体管理平台。HootSuite采用了Klout开发的计算互联网影响力的算法,帮助企业根据其关注者在Twitter上的影响力来分类这些关注者,让企业和品牌可以更好地与关注者进行沟通。
4、33Acrossor,社交服务广告公司。
5、Presto是Facebook开发的数据查询引擎,可对250PB以上的数据进行快速地交互式分析。
6、One important lesson to be learned is to trust the data. Trying to make sense of data is a great idea. Knowing the “why,” and “how” of every little detail could be useful; however, it can’t always be possible. The facts represented by data are not always easy to divine and, in fact, it might just be impossible sometimes.翻译成了“一个重要的教训是要对数据有信心。尝试了解数据的含义是个好主意,然而数据不是万能的,比如并非总能探察到每个小细节的“why”和“how”,而且由数据揭露的事实并非总是不容置疑的。”译者认为直译过来有些生硬,但是如此意译又造成一些信息丢失,渴望大家能多提提意见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27