
大数据营销,究竟带来了什么
大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。大数据技术的发展给了大数据营销发展的土壤。大数据分析产品如大数据魔镜等,为大数据营销带来了更多可能性。大数据营销究竟能带来什么?
数据流化使得营销行动目标明确、可追踪、可衡量、可优化,从而造就了以数据为核心的营销闭环,即消费——数据——营销——效果——消费。
他认为品牌会把“数据”当成营销运营的核心部分,打造符合企业、品牌行业及企业、产品特质的更加深度的数据体系和数据应用。毕竟数据是海量的,如何运营有限、有效的高质量数据为企业更好的创造价值比大海捞针的粗放式玩儿法要实际的多。然而数字时代,一个品牌不仅仅在收集数据,同时也在制造和影响数据,如何塑造和运营更加有利于企业和品牌营销发展的数据流,必然成为今后品牌营销必须面对的重要课题。因为大数据不是目的,营销投入的关键在于产出,如何合理运用数据最大化影响营销投入的ROI才是最终根本所在。
那么怎么衡量大数据网络广告价值呢?所谓的大数据营销不仅仅是量上的,更多的是数据背后对受众的感知,这体现在对大数据的规模,速度、挖掘及预测四个方面。另外王跃表示,对广告来说,产消逆转将导致头脚倒立的新型广告的出现。网络广告领域的探索颇具先见之明,其依托云端的数据库获取到海量可交互的结构与非结构化数据,并由最底层的数据分析平台支撑中上游的应用服务,打通PC和移动互联网的数据通道,逐步催生垂直的产业链形态。
目前在营销过程中涉及数据方面的多而杂,这时需要对数据的有效性进行过滤,例如行为噪声,重复数据,非目标用户数据等等。换句话说,大数据时代,数据和处理能力不再是主要矛盾,主要矛盾是如何从数据中获取想要的知识,也就是数据建模即挖掘能力。当然这个问题的求解,需要一些列建模的过程,然后把它转化成为具体的计算问题。
目前的大数据技术虽然可以让营销动作做得更加精准、有效,但做起来并不容易。即便是公认大数据营销的大佬亚马逊、乐天,也经常会被吐槽推荐的东西驴唇不对马嘴,或者是已经买过的东西也会一再推荐。因此,未来基于大数据技术的提升,大数据营销的精准性将带来更多的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10