京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据核心是在应用层面 真实有效最重要
2015年11月20日在广州车展(微博)现场,腾讯汽车举行大数据研究院战略发布仪式,正式启动“罗盘计划”。在发布仪式现场,北京金马甲产权网络交易有限公司副总裁龚冯兵现场参与互动讨论。
龚冯兵:金马甲从2009年诞生之日开始到现在已经六个年头了,在这六年里,金马甲平台在各地公车的处置上,积累了几十万条数据。我们从二手车交易来看,本地化属性很强烈。基本上做二手车都在周边800到1000公里范围之内,这就是二手车生态的特点。
从数据的角度说,不管是对于处置公车还是二手车,首先做公有车处置核心的是汽车价值评估。基于这个市场来说,之前在近几期的针对同一车款、同一年份等等,二手车的成交价格、车况什么样,车价格什么样,对于新进入市场做评估的时候,这种数据就会有具体的应用。
同时对于经销商来说,周边最近看什么品牌的车,或者什么样的二手车销量和处置情况状态,这对于经销商来说也是有利用价值的数据。因为大数据来说,我们之前也都或多或少像J.D.Power所说的,从很早的时间就做大数据,但是没有像现在是当做特别新的概念来提。可能很多人都会在大街上碰到调查问卷,这些都是大数据最原始的搜集和积累应用的方面,只不过这些年随着互联网技术、新技术的增加,让数据的采集和数据的获取方面得到了极大的效率,在数据获取的效率方面得到了极大提升。同时,利用新技术对于数据的处理分析能力也获得了巨大的提升。
在二手车处置方面,大数据最核心的是在应用层面,什么样的人来用数据,身份不一样,那对于数据的要求是不一样的。可能针对于汽车行业,我个人认为可能有三个。一个是主机厂,一个是汽车的经销商,包括各类新车的经销商、二手车经销商,还有最广大的是用户。针对于各个层面在汽车领域里面的身份,对于数据的需求是不同的。我们作为交易平台来说的话,现在正在做的工作,就是针对于不同的身份来提供相应感兴趣的,或者针对与他适应性非常强的数据。
问:请问龚冯兵总,现在在广州、深圳、天津、杭州实施的禁牌的系统,其实里面也有很多的数据。您能否介绍一下这种数据?其实更偏向于更精准一点。从这种数据来看的话,平台运营情况怎么样,以及各个城市之间有差异?互联网数据和这个平台进行结合的话,请您谈一下看法?
龚冯兵:实际上从这四地号牌每个月的竞价情况来看,就像刚才咱们所介绍的一样,本地的特性是特别明显的。不管是从参与人数,从每个地号牌成交的均价来说,地区之间都有差异化。从整体来说,像我们四地基本上每个月的竞牌的获得者总体来说在2万个用户。因为还有一部分是摇号的,光是通过竞价方式获得车牌的就是2万用户左右。每个月关注的在10万左右,也就是有意向竞牌的统计下来有10万左右。关注的基本上就更多了,在四个城市里面有两三百万的规模。
本身竞牌的核心就是一个数据最核心的,这个月可能获得了竞牌会在未来的一个月到两个月会实施购车计划。在这个过程当中,实际上这个数据对于各个品牌的主机厂来说,或者是对于想要在未来获得购买汽车,以及对获得车牌的广大消费者来说,都是有非常好的意义。
我们在通过之前每期的车牌竞价数据的积累,也是在不断地分析、研究,包括数据的车牌价格的走向。也挺有意思的,不像8、9月份价牌会高,10月到11月价格又回落。而是价格有高有低,我们也是通过数据的分析形成价格波峰波谷的规律。同时希望通过数据分析,对于主机厂和对于四地的消费者来说,也能够给予一定的参考和支撑的作用。
第一个层面,在顶层上现在大家都在说大数据,国家在大数据相关立法方面应该拿出具体的措施来。让大家在一个合规合法的情况下去获取数据,去分析数据,去运用数据,让它在法制的大环境下产生更大的经济效益。
第二个层面,像各位嘉宾都是在做大数据生产和经营方面的事情。对于消费者来说,我们能够给各类的消费者提供真实有效的,特别是有效和真实的数据,是我们大数据从业者所要牢固树立的核心出发点。
第三个层面,从金马甲本身来说,希望在今后包括跟腾讯汽车,罗盘计划我们也进入了,跟张教授和从业者一起共同努力,给汽车行业的经营者和消费者提供更为高效和优质的服务。
张教授刚才提到了腾讯推出具体的产品,实际上金马甲跟腾讯现在正在做的四地号牌的产品。我们利用腾讯的微信,做了一个微信的四地号牌的产品,通过这个产品可以给四地号牌消费者非常好的服务,包括历史成交的数据,包括下一步的价格分析等等。我们想通过与跟腾讯汽车合作的产品,来为消费者进行精准的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09