京公网安备 11010802034615号
经营许可证编号:京B2-20210330
快速成为数据分析师的六招技能
近几年美国公布的相关数据分析中,薪酬最高、最吃香的行业中便有IT业。IT产业日益崛起,技术也被越来越多的人掌握,而往往最被看重的技能是:数据分析、风险管理、机器人技术、信息安全、网络技术。数据分析排名第一最受青睐。接收到这样的信号,一定有很多非专业人士也想成为数据分析师吧,如何速成数据分析师?下面的技能让你事半功倍。
技能一:理解数据库。
还以为要与文本数据打交道吗?答案是:NO!进入了这个领域,你会发现几乎一切都是用数据库 来存储数据,如MySQL,Postgres,CouchDB,MongoDB,Cassandra等。理解数据库并且能熟练使用它,将是一个基础能力。
技能二:掌握数据整理、可视化和报表制作。
数据整理,是将原始数据转换成方便实用的格式,实用工具有DataWrangler和R。数据可视化,是创建和研究数据的视觉表现,实用工具有ggvis,D3,vega。数据报表是将数据分析和结果制作成报告。也是数据分析师的一个后续工作。这项技能是做数据分析师的主要技能。可以借助新型软件帮助自己迅速学会分析。如大数据魔镜可视化分析软件(“魔镜”)既可以满足企业需求,也可以适应个人需要,是进行数据分析的一个新型而精准的产品。
技能三:懂设计
说到能制作报表成果,就不得不说说图表的设计。在运用图表表达数据分析师的观点时,懂不懂设计直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则才能让结果一目了然。否则图表杂乱无章,数据分析内容不能良好地呈现出来,分析结果就不能有效地传达。
技能四:几项专业技能
统计学技能——统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。
社会学技能——从社会化角度看,人有社会性,收群体心理的影响。数据分析师没有社会学基本技能,很难对市场现象做出合理解释。
另外,最好还能懂得财务管理知识和心理学概况。这些都将会使你做数据分析的过程更容易。
技能五:提升个人能力。
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。另外,与数据打交道,细心和耐心也是必不可少的。
技能六:随时贴近数据文化
拥有了数据分析的基本能力,还怕不够专业?不如让自己的生活中充满数据分析的气氛吧!试着多去数据分析的论坛看看,多浏览大数据知识的网站,让自己无时无刻不在进步,还怕不能学会数据分析吗?
拥有这些技能,再去做数据分析,数据将在你手里变得更亲切,做数据分析也会更简单更便捷,速成数据分析师不再遥远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03