京公网安备 11010802034615号
经营许可证编号:京B2-20210330
张溪梦:拿什么拯救你,疲于污水处理的数据分析师
大数据时代,数据成为企业决策最为重要的参考之一。尽管数据源的生成量正以几何倍数的速度增加,尽管各行各业都在标榜自己生产了多少有价值的数据,但究竟哪些数据可以为企业所用,如何基于高效的数据分析创造商业价值,仍是非常具有挑战性的话题。
对于以上问题,【WOT2015"互联网+"时代大数据技术峰会】特邀讲师、GrowingIO创始人张溪梦分别基于企业运营需求及技术发展角度进行了分析,下面就让我们一起学习,最新一代的数据分析技术将如何帮助企业最大限度发挥数据运营效率。
【WOT2015"互联网+"时代大数据技术峰会】特邀嘉宾 张溪梦
张溪梦,GrowingIO创始人、CEO,前LinkedIn分析部高级总监。美国Data Science Central评选其为"世界前十位前沿数据科学家",前LinkedIn美国商业分析部高级总监,亲手建立了LinkedIn将近90人商业数据分析和数据科学团队,支撑了LinkedIn公司所有与营收相关业务的高速增长。 2015年5月,创立新一代网站和移动端数据分析平台GrowingIO,创始团队来自LinkedIn 、eBay 、Coursera、亚信等国内外顶级互联网及数据公司,具有强大的商业分析、数据产品、企业软件研发以及机器学习等专业背景、先进的数据分析技术和丰富的实战经验。
数据分析创造商业价值
现在,几乎再没有人会质疑数据驱动对于企业运营和商业价值的重要性,工业4.0都将大数据的存储、剖析、安全保障和数据价值的呈现和利用,列为未来三大核心诉求之一。
为什么数据化运营如此重要?因为基于证据的决策更可靠。依照数据分析得到的结论,企业可以快速发现问题、判断趋势、有效行动,从而指导公司未来的发展方向。
张溪梦认为,企业中的每一位员工都应该参与到数据化运营的工作中来。数据可以直观的将一些原本无形的标准进行量化,从而帮助员工发现自己的工作与业务结果之间的联系,有针对性的开展工作。
可让这个想法落地并不简单,因为这不仅仅是收集收据、定期查看而已。培养专业人才、在更短的时间内处理更多的数据、保证处理数据的质量和性能、让合适的人员使用合适的工具……有太多太多困难都在拖慢企业数据化运营的进程。
企业数据分析流程的90%耗费于初级阶段
互联网技术的发展为企业加速创新提供前所未有的机遇。在快速变化的商业格局下,企业是否有迅速做出决策的能力,成为影响未来生存和发展的关键。
然而现实往往是残酷而无奈的。张溪梦告诉我们:“去年美国某研究机构做过一份关于企业数据分析流程的调查,结果显示,仅仅是在数据收集阶段,就要花费5个星期的时间”。
造成这种局面的关键因素之一,是目前的大数据分析需要专业技术人员同时具备编程和数据分析两种能力。张溪梦将数据分析的流程形象地比喻为将一条被污染的河水变清的过程。我们收集的大量数据就像流入源头的污水,需要人力进行各种监控,然后放入一个池子里进行沉淀。之后则要开展各种清洗、聚合、再清洗、再消毒,再传输等庞大、繁杂的工作,这个过程占用了数据工程和分析师几乎90%的时间。企业急需更加先进的技术和更具指导性的方法论,来提升数据化运营的效率。
“自动化”是下一代数据分析技术的核心
要想突破目前企业数据分析中的瓶颈,关键要对现有的业务的数据分析流程进行大规模的简化,将人类的智慧集中到最能够创造商业价值的环节中。
张梦溪认为,取代今天这种功能化的数据分析的下一代数据分析技术,一定是基于以自动化为核心的一套框架。这需要企业对沉淀多年的传统技术框架进行革新。过去,为了应对基础设施在计算、存储等能力上的缺陷,往往需要将来源不同、类型不同的数据制成多维度的各种表格,来达到减少存储量的目的,这会大大拖慢企业数据处理效率。
对于未来数据分析技术趋势,张溪梦主要提到以下两个方面:
流式处理框架:这是企业实现数据自动化的核心技术。流处理的优势是可以任意数据格式进行转换,实现近乎实时的数据处理能力。
数据分析云化:云计算技术为企业IT的基础设施带来革命性的力量。将数据分析做成云端的SaaS服务后,开发人员将不再需要维护大量系统和工作流。最重要的一点,我们大幅度的降低数据分析埋点才可以详细地收集用户数据的这个巨大的限制,只需要结合业务需求,进行简单的拖拽实现定制化的数据采集规则。
流处理和云两种技术的结合,会使数据像雨滴一样,慢慢聚集在云端的服务器里面开始积累,用户将不再需要做大量的IT的基础设施的工作,或者是做各种数据清洗、整合、线上、线下聚合。
张梦溪表示,“在未来分工化、协作化的格局下,企业应该将一些相对支持性的功能外包给真正的专家或者是产品,专注做好自己最擅长的事情,所以数据分析云端化这是一个必然的趋势。”
WOT峰会将分享如何用数据化运营创造商业价值
在11月28-29日由主办位于深圳的【“互联网+”时代大数据技术峰会】中,张溪梦将带来目前最先进的全自动化数据分析的相关技术和方法论,并与大家探讨何利用实时数据分析,帮助企业最大程度地创造商业价值。
采访最后,张溪梦描述了这样的愿景:“我希望现在的企业家们都能看到云端数据分析自动化的趋势,未来每一家企业和个人都可以做自己最擅长和关注的工作,一起来把这个世界构建的更美好。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29