京公网安备 11010802034615号
经营许可证编号:京B2-20210330
编译|SW 黄念 校对|姚佳灵
前言
如果你对大数据了解不足,可能会惊讶地发现数据科学家和商业分析师提供不同的结果。即便这种情况发生了,你也不会是唯一的一个,因为这两种职业经常被混为一谈。今天我们将呈现六张信息图,助你拨开数据科学的迷雾。
商业分析师和数据科学家都是使用数据的专家,但他们以不同的方式使用自己的专业知识,正如目前的就业前景所佐证的——公司对商业分析师的需求远高于对数据科学家的需求。
通常情况下,商业分析师因为他们在商科、人文学科的专业背景,擅长于在各种来源的数据中挖掘信息,用以评估过去、现在和未来可能的经营业绩。然后他们向企业用户解释那些结论,企业用户需要商业分析师给出在那种状况下最有效的分析模型和方法。
与此相反,数据科学家因为有计算机科学、数学和技术的强大学术背景,他们事实上通过使用统计程序开发了收集数据的框架,并通过创建及实施支持他们成果的算法来应用数据。这些算法有助于商业决策和数据管理,同时创建数据可视化以帮助解释收集到的数据。
要了解更多数据科学家和数据分析师之间的差异,请看下面的信息图,以确保你聘用合适的专业人士,以满足你独特的业务需求。
商业分析师VS数据科学家
在大数据时代,分析处理复杂信息会带来改变世界的创新。为了理解这些数据,许多公司聘用包括商业分析师和数据科学家在内的许多专家。
他们是谁?
商业分析师
从结构化和非结构化的来源研究和提取有价值的信息,解释过去的、现在的和将来的经营业绩,确定最佳分析模型和途径,为商业用户提供和解释解决方案。
数据科学家
借助统计编程,设计、开发和运用算法来支持商业决策制定工具,管理海量数据,创建可视化以帮助理解。
他们接受了什么教育?
大部分商业分析师都有包括商科和人文学科在内的多种教育背景。与此同时,数据科学家则来具有计算机科学、数学及技术等教育背景。
商业分析师和数据科学家的具体教育情况及专业课程如表所示:
他们拥有什么技能?
商业分析师和数据科学家都是运用数据辅助决策的专家。然而,他们是用不同的方式、利用相同或类似的工具来应用他们的技能。以下所列技能为该领域硕士应该具备的技能。
他们在哪里工作?
当前就业前景和需求
来自大数据文摘
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20