京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有没有人从数据的角度研究过艺术市场
比如从数据角度分析艺术品的合理定价,或者从交易数据来分析单个艺术品的价格走势,以及以数据来分析某个艺术家?
有的。我就一直在做相关领域的研究工作,我创立了一个叫做守望者的工作室,专门从事艺术市场的数据挖掘、分析工作,并提供相关领域的定制研究和咨询服务。
基于数据的艺术市场研究
我们的研究方法是:首先,收集艺术市场的原始数据,比如艺术家档案、展览新闻、拍卖结果等,然后在这些原数据的基础上,把它们合并到一个统一的数据库中,进行细致的数据清洗工作。通常这个步骤叫做数据沉淀。
接下来就是初步的分析。有了成交价格、作品尺寸、作者、创作年代这些基础信息后,第一块可以分析的就是价格数据。艺术品属于非同质品,因此你会马上发现国内以前通行的“平尺价格”这种方法是非常粗糙的。
为了解决这个问题,我们大约花费了3个月的研发时间,初步建立了一种回归分析法,也就是将面积、材质、主题、代表性等因素考虑进去,赋予一定的权重,计算出一个艺术家的“平均艺术品模型”(算法本身只横向对比艺术家本人的数据,因此这种回归分析不会导致艺术家彼此之间因为非同质化而产生的干扰),然后求出单个艺术品的成交均价。将每年的价格数据汇总后,形成类似这样的图表:
上图就是一个艺术家作品的价格趋势与市场整体走势对比分析图,由于目前2015年还未结束,所以图表中排除了2015年的数据避免干扰。
在这个领域,我们也抱着学习的态度。国内的雅昌艺术网有一个拍卖数据库,做的工作是类似的,在数据沉淀方面它们的工作做得非常全面。但由于雅昌主要是一个网络媒体,它们的工作重点聚焦于价格指数、天价艺术品排名、平均价格等具有眼球效应的指标分析上,我们则是对每个艺术家的价格以及导致价格的成因进行非常详细的深度分析。
国外也有著名的ArtPrice、ArtNet等网络平台,专门研究艺术品的价格进行定量分析,非常专业,它们只凭借价格数据这一点,就形成了会员制服务或定制报告服务来盈利。
更深入的分析
当然,作为专项做艺术市场研究的团队,我们不会止步于价格趋势的研究,因为这块所反映的只是交易的结果,而不是原因。在一些行业前辈的指导下,我们建立了重要的分析方法界面。比如,我们与有着多年市场交易经验的业内操盘者进行交流,建立了艺术市场的“多市场分析(Many Markets)”数据沉淀方法,在传统的一级市场数据(艺术展览、活动和出版物数据)与二级市场数据(主要是拍卖数据)基础上,我们进一步挖掘了所谓零级市场数据和三级市场数据。
其中,“零级市场”主要是指对艺术家档案数据的研究,从艺术家的成长经历中,剥离出最有价值的数据点,形成知识库。而第三级市场我们主要指的是博物馆、政府机构和非盈利组织的收藏和展览数据。
发现价值被低估的艺术家
之所以建立这样的分析模型,是因为艺术品创作通来自来艺术家本人的常年刻苦钻研,而艺术品最终会流向博物馆和非盈利性收藏。所以,我们将传统的一些定性分析法转化成定量分析工具,将具有类似属性的艺术家排列在一个界面上进行分析,就可以制作出具有“价值投资”思想的量表分析界面,找到那些具有“隐形价值”的艺术家,也就是其价值还没有充分体现在价格上面的、被市场低估的艺术家。
根据研究,我们发现艺术家的市场价值基本符合正态分布模型,类似上图,具有长期、持续的良好市场价值的艺术家品牌大约需要达到2sigma+水平,大约占艺术家整体数量的2.3%,其中具有天价效应的艺术家大约占总体的千分之一,因此,如果投资艺术品,采用随机投资的方法,从长期来看是具有较高风险的,这也是我们研究的一个具体价值体现点 —— 找到价值被低估的艺术家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06