京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据潮流下如何做好电影IP
在小豆包创业沙龙活动现场,ABD爱梦娱乐CEO雷鸣,分享了如何利用大数据,做好一部电影IP,雷鸣谈到《捉妖记》,《煎饼侠》以及《大圣归来》三部影片给人们最大的感触还是蹭蹭上涨的票房。
雷鸣,6年电影经历,4年互联网经历,公司以互联网大数据的思维方式,规范电影制作的工业化流程,以国内电影产业链升级为目标,一半互联网,一半电影。
今年7月份的中国电影,是一个疯狂增长的票房,而对于整个电影工业来讲,票房始终是不可逾越的最终数据结果。很多时候,我们以为票房预测带有偶然性因素,明星因素,或者导演因素,但是真正如同这三部爆炸性的电影IP,是可以从大数据角度考虑的,那么如何利用大数据,做好一部电影IP。
在中国,雷鸣认为大IP改编成电影在两到三年内是说不通的,比如大家熟悉的《三体》从召开发布会到电影杀青,不到一年时间。
众所周知,科幻电影是非常耗时间的,《捉妖记》从最开始的demo版本,一直到上映是五年时间,其中几分钟的demo已经做了两年时间,胡巴的形象就整整修了一年。
一定要有这样严谨的态度,投放到市场上才能得到大家的喜欢。
无论是《钢铁侠》,还是《捉妖记》,它们所有的电影制作流程,和我们在国内所学到得是不一样的。中戏和北电都是基于一种创作者中心的方式,导演自己选剧本,选演员,调教演员,每一个细节都要自己亲自参与,但好莱坞制作电影有自己的工业化流程,每一个工序流程中的每一个人都是一个专家。
还是用《捉妖记》举例,它是严格按照工业流程做出来的电影,有大量对观众以及事情本身的调查研究。
影响一部电影成功的因素,有2/3在电影开拍之前就已经决定了,当一个故事的题材和故事主线确定之后,有多少观众想看,就已经基本上确定了。根据互联网数据和下游数据,判断不同类型片,受众的喜好程度,比如汤唯主演的《命中注定》上映前,雷鸣说这部电影票房无法破亿,难道女神汤唯不值一个亿吗?当然不是,观众本身就不喜欢这个类型的电影,也不会去做推荐。
美国六大电影公司本身就是半个数据公司,他们投资的电影都是一亿美元起的,准备时间非常长,开发过程也非常保守,需要对观众进行调研,观众是怎么样想的,根据观众喜好进行修改,所有的IP开发都是需要数据的,因此电影成功最关键的因素,三分之二是由前期开发决定的。
电影票房的体量是由目标观众的观影意愿和上映后的观众口碑决定的。不同题材里面,票仓深度存在一定差异,中国现在国产喜剧的票仓深度在15亿左右,不是说你拍个喜剧就有15亿票房,而是这15亿在这,你有本事拍一部很棒的喜剧,你来拿这个票房。
电影上映前,观众还不知道影片是个什么样子,宣发能够用自己的方式,影响到对这个题材感兴趣的人群。上映之后,因为互联网时代传播太快,口碑是第一时间拿到的东西,好不好,大家心里有了概念,口碑才是转化为票房的重要因素。
一部电影看完了,有人沉默了,也就那样;有人觉得不错啊,没事去看看;有人说太好看了,你一定要去看;还有的会说这个电影太烂了,千万别去看。
这些口碑的描述很快就能体现在票房曲线上,包括《捉妖记》,《煎饼侠》以及《大圣归来》,高口碑之下,票房不断延续,形成长尾票房。
所以最终还是电影的质量,观众想不想看,决定了最终的电影票房。
一部电影在拍摄前,自身的题材和故事就决定了有少观众想看,拍摄前后需要严格按照电影的工业流程推进,最终决定票房的,还是电影的内容,观众的口碑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06