
这七种数据分析领域中最为人称道的降维方法
近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。
最新的一个例子是采用 2009 KDD Challenge 大数据集来预测客户流失量。 该数据集维度达到 15000 维。 大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。该项目的最重要的就是在减少数据列数的同时保证丢失的数据信息尽可能少。
以该项目为例,我们开始来探讨在当前数据分析领域中最为数据分析人员称道和接受的数据降维方法。
该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。该方法示意图如下:
与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。算法示意图如下:
高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。算法示意图如下:
组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属性经常成为最佳分裂属性,那么它很有可能是需要保留的信息特征。对随机森林数据属性的统计评分会向我们揭示与其它属性相比,哪个属性才是预测能力最好的属性。算法示意图如下:
主成分分析是一个统计过程,该过程通过正交变换将原始的 n 维数据集变换到一个新的被称做主成分的数据集中。变换后的结果中,第一个主成分具有最大的方差值,每个后续的成分在与前述主成分正交条件限制下与具有最大方差。降维时仅保存前 m(m < n) 个主成分即可保持最大的数据信息量。需要注意的是主成分变换对正交向量的尺度敏感。数据在变换前需要进行归一化处理。同样也需要注意的是,新的主成分并不是由实际系统产生的,因此在进行 PCA 变换后会丧失数据的解释性。如果说,数据的解释能力对你的分析来说很重要,那么 PCA 对你来说可能就不适用了。算法示意图如下:
在该方法中,所有分类算法先用 n 个特征进行训练。每次降维操作,采用 n-1 个特征对分类器训练 n 次,得到新的 n 个分类器。将新分类器中错分率变化最小的分类器所用的 n-1 维特征作为降维后的特征集。不断的对该过程进行迭代,即可得到降维后的结果。第k 次迭代过程中得到的是 n-k 维特征分类器。通过选择最大的错误容忍率,我们可以得到在选择分类器上达到指定分类性能最小需要多少个特征。算法示意图如下:
前向特征构建是反向特征消除的反过程。在前向特征过程中,我们从 1 个特征开始,每次训练添加一个让分类器性能提升最大的特征。前向特征构造和反向特征消除都十分耗时。它们通常用于输入维数已经相对较低的数据集。算法示意图如下:
我们选择 2009 KDD chanllenge 的削数据集来对这些降维技术在降维率、准确度损失率以及计算速度方面进行比较。当然,最后的准确度与损失率也与选择的数据分析模型有关。因此,最后的降维率与准确度的比较是在三种模型中进行,这三种模型分别是:决策树,神经网络与朴素贝叶斯。
通过运行优化循环,最佳循环终止意味着低纬度与高准确率取决于七大降维方法与最佳分类模型。最后的最佳模型的性能通过采用所有特征进行训练模型的基准准确度与 ROC 曲线下的面积来进行比较。下面是对所有比较结果的对比。
从上表中的对比可知,数据降维算法不仅仅是能够提高算法执行的速度,同时也能过提高分析模型的性能。 在对数据集采用:缺失值降维、低方差滤波,高相关滤波或者随机森林降维时,表中的 AoC 在测试数据集上有小幅度的增长。
确实在大数据时代,数据越多越好似乎已经成为公理。我们再次解释了当数据数据集宝航过多的数据噪声时,算法的性能会导致算法的性能达不到预期。移除信息量较少甚至无效信息唯独可能会帮助我们构建更具扩展性、通用性的数据模型。该数据模型在新数据集上的表现可能会更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14