京公网安备 11010802034615号
经营许可证编号:京B2-20210330
拥抱大数据营销时代
众所周知的,以和媒体打交道著称的的公关行业在互联网时代迎来的全新的挑战,越来越多的他要为企业提供直接面向千万消费者的网络服务。
这个行业中的每一个人,无论是主动还是被动,都被这股数据的洪流裹挟着朝着“大数据”时代一路狂奔,拥抱大数据时代就是营销人的唯一“宿命”。
以上文字为放狠话,仅代表个人情绪和观点。
这年头,做营销做公关的,对于层出不穷的互联网应用和由此诞生的新名词儿都必须要知道了解熟悉并且迅速转化在给客户的提案中,所以不管我们是不是真的弄明白什么是云计算什么是大数据,都必须在这条“追新”不死人的路上勇往直前见招拆招。
在谢文老师《迎接大数据时代》一文中,对大数据的定义有所描述:
按照维基百科上的定义,所谓“大数据”(big data)在当今的互联网业指的是这样一种现象:一个网络公司日常运营所生成和积累用户网络行为数据“增长如此之快,以至于难以使用现有的数据库管理工具来驾驭,困难存在于数据的获取,存储,搜索,共享,分析和可视化等方面。”这些数据量是如此之大,已经不是以我们所熟知的多少G和多少T为单位来衡量,而是以P(1000个T),E(一百万个T)或Z(10亿个T)为计量单位,所以称之为大数据。
什么是大数据营销哪?
大数据营销应该值在互联网普及的当下,社会化应用以及云计算,使得网民的网络痕迹能够被追踪、分析等,而这个数据是海量的以及可变化的,企业或第三方服构借助这些数据为企业的营销提供咨询、策略、投放等营销服务的行为,可以被成为大数据营销。
和大数据一样,大数据营销其实也不算很新的概念,只是因为随着云计算、云端应用、各种移动设备的普及,以及facebook、twitter等社会化媒体的兴起,诸如google和亚马逊对数据营销体系的成熟,使得大数据营销受到越来越多的关注并且逐渐成为多数企业的必选题。
大数据营销是未来营销的主战场,因为所有的人在说电视、报纸等传统媒体在增长在放缓乃至衰减,而且随着多网融合,大数据正在将传统渠道的数据融合,由此形成的“数据为王”的营销格局。
未来的企业市场营销费用的分配,除了部分品牌投放外,多数投放都是在大数据指引的,企业的消费群分布在哪里?企业的潜在用户在哪里?通过大数据找到他们分布的地方,然后用有创意的投放形式让他们成为企业的粉丝以及形成销售。
在大数据营销时代,任何投放带来的点击率、转化率和销售,网络舆情,都将以数据呈现,而如何利用大数据的价值,对于第三方机构而言,都是“技术性”的挑战。
当然,需要注意的是随着大数据时代的来临,数据的量是巨大的呈现无规律分散的;对于企业营销人员而言,如何在海量的大数据中,通过合理的方法论找到对企业有帮助的数据,并且将预算合理的分配在为数众多的数据来源的平台上——这对企业营销人员以及企业决策人而言,都意味着巨大的风险。
就好像我们熟知的那句话,“企业不上网是等死,企业没准备好就上网有可能是找死”。
如何在维护现有营销渠道的同时,覆盖更多更好更有效的网络平台,对于品牌企业的市场部门而言,机遇和风险同样巨大。
我们熟悉的google、facebook、亚马逊等,都是大数据营销的领先者,他们通过对大数据的挖掘、追踪、分析以及投放等的数字化手段,为企业实现大数据营销,不仅帮助企业实现营销目标,也使得他们的商业模式更加的具有技术壁垒。
对于国内而言,大数据营销还处于起步阶段。
相对领先的是百度和阿里巴巴淘宝的搜索和竞价广告体系,这是最容易让企业客户理解的数据营销模式——大数据营销对于传统门户的挑战将会更大,显示广告不仅仅会被要求被展示,更将要和企业官方、官方微博、官方主页关联,更精准更有效,对于互联网媒体而言,在大数据营销时代继续保持对广告主的吸引力,除了保持媒体的影响力外,对广告模式的探索也是必须要做的。
这点,新浪微博的机会是无疑是最好的,也是最可以被关注研究的案例。
对于众多国内的第三方营销传播机构而言,很难会像奥美等大企业直接收购和购买成型的数据公司,但是仍然可以通过其他方面拥抱“大数据”。
国内的媒体环境同样很复杂,众多企业对传统媒体的预算并不是太过削减的同时,会逐渐加大对新媒体费用的倾斜,在这样一个新兴的环境下,能够通过边摸索边前行的方式建立更人性化更智能的投放模式,对于从业者而言,机遇大于挑战。
对于大数据营销而言,需要具备以下能力:
1、 营销传播机构要有采集数据的能力:数据的来源取决于网络业的“开放度”。国内互联网相对封闭的环境,使得数据的采集有相当的难度,尤其是在海量的大数据时代;
2、 营销传播机构要有对数据的整理分析能力:对采集数据的分析归纳,可能是大数据营销快速发展的桎梏。做产品的多数是理科背景,做营销的多数是文科背景,所以,你懂的;
3、 营销传播机构要有策略和投放能力:通过对数据的分析和归纳,形成合理的投放决策,要求我们的市场营销人员,不仅是能够写方案写稿件,更能读懂数据看懂表格,还要能够提出需求~
大数据营销时代,营销人员的产品经理化,将是未来数年营销业的趋势。
如何管理和应用这些打数据,控制隐私和公共空间的边际,最大化他们的价值,被技术驱动的大数据营销——这是对于我们这些有追求的营销人的重大挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11