京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:如何把握创业方向与机遇
一、大数据时代的创业特征
大数据时代,人们寻找创业机遇,最重要的是数据收集和分析能力,从数据中找到好点子。首先,大数据技术在萌芽阶段就是开源技术,这会给基础架构硬件、应用程序开发工具、应用、服务等各个方面的相关领域带来更多的机会。其次,创业者不需要是统计学家、工程师或者数据分析师也可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。此外,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。总之,开放数据和开源技术将使创业门槛降低,创业机会大大增加。
二、大数据时代的创业方向
现有的大数据工具有着技术门槛高、上手成本高、和实际业务结合较差以及部署成本高,小公司用不起等特点。那么新创企业就可以根据以往这些产品的缺陷,来做更适合市场和客户的大数据分析工具和服务。另外,将大数据工具完整化和产品化也是一个方向。新一代的大数据处理工具应该是有着漂亮UI,功能按键和数据可视化等模块的完整产品,而不是一堆代码。因此大数据创业的2B方向,更多的是做工具和服务,如数据可视化、商务智能、CRM等。而在2C方向,大数据一个很大的作用就是为决策做依据,以前做决定是“拍脑袋”决定,现在,做决定是根据数据结果。个人理财(我的钱花哪去了,哪些可以省下来)、家庭决策(孩子报考哪所大学)、职业发展/自我量化(该不该跳槽,现在薪水到底合适不合适 )以及个人健康都可以用到大数据。
三、大数据时代的创业机会
大数据在各个行业的垂直特色化应用其实会更有想象空间,包括金融、电信、健康、媒体广告、零售、交通、政府、智慧城市、房地产和家居家电等行业都会有很多应用机会:
1、金融——大数据公司专门聚焦在通过大数据进行客户信用评级,并为银行、保险公司或者P2P平台服务;或者基于大数据挖掘帮助银行进行客户细分、精准营销服务。
2、电信——这个方向已经有专门为电信企业提供客户生命周期管理解决方案、客户关系管理、精细化运营分析和营销的数据公司;或者基于大数据提供网络层的运维管理和网络优化服务的大数据公司。
3、健康——未来两三年将会出现一批基于各种可穿戴设备形成的健康云数据,进行深度的数据数据分析和挖掘的企业,帮助人们进行健康预测和预警;未来还可以服务公共卫生部门,打通全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应等。
以上只是简要列举一些典型的大数据创业机会,更多行业的大数据应用和创业机会分析请参见前瞻产业研究院发布的《2015-2020年中国大数据产业发展前景与投资战略规划分析报告》。虽然近期大数据得到政府的大力支持,大数据相关的公司也如雨后春笋般冒出来,但是数据行业是慢工出细活的行业,独立第三方数据公司的品牌影响力也需要较长时间的积累,因此不能跟着概念创业,必须从真实需求出发,从企业和用户对数据的需求出发做大数据产品,找准自己的定位是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29