
大数据分析要避免常犯的5个错误
人们常常自我陶醉于做出了几张漂亮的图标或者PPT。这些总结性的表达看上去很令人振奋,但我们不应该基于这些肤浅的总结来做决策,因为这些漂亮的总结性陈述并不能真正反映问题的实质。
就算了解数据分析,聪明人在进行数据分析时,也会犯错。下面5个错误就是聪明人也常犯的5个错误:
1. 走得太快,没空回头看路。
初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死,要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪些部分被使用,以及用户回头二次使用产品的原因主要有哪些。而这些问题如果没有数据难以回答。
2.你没有记录足够的数据。
光给你的团队看呈现总结出来的数据是没有用的。如果没有精确到日乃至小时的变化明细,你无法分析出来数据变化背后看不见的手。如果只是粗放的,断续的统计,没有人可以解读出各种细微因素对于销售或者用户使用习惯的影响。
不要害怕量大。对于初创企业来说,大数据其实还是比较少见的事情。如果正处于初创期的你果真(幸运地)有这样的困扰,可以使用Hadoop平台。
3. 其实你的团队成员常常感觉自己在盲人摸象。
许多公司以为他们把数据扔给Mixpanel, Kissmetrics,或者Google Analytics就够了,但他们常常忽略了团队的哪些成员能真正解读这些数据的内在含义。你需要经常提醒团队里面每一位成员多去理解这些数据,并更多地基于数据来做决策。要不然,你的产品团队只会盲目地开发产品,并祈祷能踩中热点,不管最终成功还是失败了都是一头雾水。
举个栗子。有天你决定采用市场上常见的病毒营销手段吸引新用户。如你所愿,用户量啪啪啪地上来了。可此时你会遇到新的迷茫:你无法衡量这个营销手段对老用户的影响。人们可能被吸引眼球,注册为新用户,然后厌倦而不再使用。你可能为吸引了一帮没有价值的用户付出了过高的代价。而你的产品团队可能还在沾沾自喜,认为这个损害产品的营销手段是成功的。
4. 目光短浅。
任何一个好的数据分析框架在设计之初都必须满足长期使用的需要。诚然,你总是可以调整你的框架。但数据积累越多,做调整的代价越大。而且常常做出调整后,你需要同时记录新旧两套系统来确保数据不会丢失。
因此,我们最好能在第一天就把框架设计好。其中一个简单粗暴有效地方法就是所有能获取的数据放在同一个可延展的平台。不需要浪费时间选择一个最优解决方法,只要确认这个平台可以装得下所有将来可能用到的数据,且跨平台也能跑起来就行了。一般来说这样的原始平台能至少支撑一到两年。
5. 过度总结
虽然说这个问题对于拥有大数据分析团队的公司来说更常见,初创公司最好也能注意避免掉。试想一下,有多少公司只是记录平均每分钟多少销售额,而不是具体每一分钟销售了多少金额?在过去由于运算能力有限,我们只能把海量数据总结成几个点来看。但在当下,这些运算量根本不是问题,所有人都可以把运营数据精确到分钟来记录。而这些精确的记录可以告诉你海量的信息,比如为什么转化率在上升或者下降。
人们常常自我陶醉于做出了几张漂亮的图标或者PPT。这些总结性的表达看上去很令人振奋,但我们不应该基于这些肤浅的总结来做决策,因为这些漂亮的总结性陈述并不能真正反映问题的实质。相反,我们更应该关注极端值(Outliers)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01