
智能交通五大特征大数据平台应用功能强
大数据、云计算,已逐渐为互联网企业广泛应用,而将这种理念应用在交通管理服务中的,并不多见。烟台市交警支队从2010年开始建设大数据、云计算平台,到2013年底基本建成,在不断完善中,大数据、云计算的智能交通系统在交管中发挥了越来越重要的作用。
智能交通有以下五个基本特征
分析当前我国交通发展现状和技术生产力发展情况,可以认为应具有以下几点特征。
特征一:交通要素泛在互联
包括道路、桥梁、附属设施等交通基础设施,车辆、船舶等运输装备,以及人和货物在内的所有交通要素,在新的传感、自组网、自动控制技术环境下,能够实现彼此间的信息互联互通和自动控制,交通基础设施、运输装备将具备多维感知、智慧决策、远程控制、自动导航等功能,实现主动预测、自动处置。
特征二:虚拟与现实相结合,线上与线下相配合
未来的交通运输系统将由用户在网络上提出客货运输需求,运输系统在接收网上运输需求以后,利用大数据、云计算、人工智能等技术手段在网络上解析运输需求,提出运输策略,制定运输计划,然后再交由线下的交通运输设备设施去完成实际的运输生产。
特征三:门到门一体化综合运输
对用户而言,未来的交通运输系统就是一个整体的运输服务提供商。用户无需了解交通运输系统内部的构造与运作方式,只需要提供从a到b的运输需求,系统自然会提供一整套的解决方案,包括票务的“一票制”,运输组织的多式联运、无缝衔接、连续性和全程性。
特征四:应需而变为用户提供适应性服务
在全面感知、实时通信、海量数据分析能力不断提升的前提下,用户与系统平台交互更加频繁密切,使交通运输系统更加具有类人的智慧,可以根据实际情况的变化,应需而变,为各类用户提供个性化的、多样化的、以人为本的运输服务。
特征五:运输生产组织和管理高可靠性和高效能
智慧交通包含智能化的交通基础设施、智能化的交通运输装备、智能化的运输组织服务等。生产组织和管理者对各种运输要素的掌握更加详细、及时、准确,对各种风险能够更加有效地控制和应对,并能够通过智能技术使得运输生产的策略更加科学,运输生产组织和管理可靠性更高、效能更高。
智能交通综合平台应用效果
大数据平台试运行收获多
10月15日,从承德交警支队视频综合应用警务平台新闻发布会上获悉,市区一天就出现违反交通规则行驶734起,市交警部门根据以上状况,迅速做出反应,将当前工作重点及时调整,开展了机动车违规行驶专项整治。这种针对问题做出的快速反应得益于市交警目前引入实施的“大数据”平台建设。
以往交警使用的系统设备全部为模拟产品,大部分工作环节需人工操作,工作效率低、重要线索无法及时发现,无法实现精细化管理和应用。为改变这种状况,我市交警部门实施了“大数据”建设,引入实时指挥、违法状况分析、布控报警联动、套牌检测、轨迹分析等功能。平台试运行一个月,通过技术手段,分析判断出500多辆套牌嫌疑车辆,其中近20辆为出租车。
交通信号智能管控
烟台市2011年引入智能交通管理系统,包括“一个管控平台,十二大集成系统”建设,共增设高清监控328处、电子警察103个路口、卡口23处,智能诱导系统41处、流量采集点49处、智能信号控制300处。系统投入使用后,城区闯红灯、不按导向车道行驶等违法率降低50%;早晚高峰主干道同行速度提高14.6%和12.1%,道路通行能力提高13.5%,城区拥堵程度有“中度拥堵”下降为“轻度拥堵”。
除去交通信号系统的智能管控,烟台市率先实现了市区主干道的公交车交通信号优先。烟台市1路公交行驶路线贯穿烟台市最繁华的南大街全线,全长近20公里。烟台市交警支队交警王健对记者说:“1路公交全部车辆安装了信号发射器,要通过的25个路口也全部安装了信号接收装置,当1路公交接近路口时,信号灯会根据1路公交的车速和距离,适时调整信号灯时长。1路公交全程运行时间缩短5—10分钟。”但是牵一发而动全身,1路公交得到了信号优先,就将影响周边交通流量,而智能交通系统就需要找到其中的平衡点,“这些都是通过大量数据的计算得到的结果。”
除去缓解城市交通拥堵,大数据、云计算的智能管控系统还能实现更多更强大的功能。比如,乘客打车时物品遗落,但无法说清车牌号。交警接到报警后,根据乘客乘车行驶的线路和时间,用时不到5分钟,就检索到了乘客所乘车辆;凌晨时间通行的车辆,除去出租车外,一般情况都会单向行驶,不会在市区内乱转。一旦凌晨时段一辆汽车反复通过某几个路口,就可能存在违法行为嫌疑,系统会自动报警。而对于可能存在的假牌、套牌车,智能管控系统会自动甄别车牌号并报警。特别是套牌车,同一时间不同路段出现2个同样号牌,系统同样自动报警。系统启用以来,共查处假套牌车276辆,协助侦破刑事治安案件40起,涉嫌金额达2000万元。在刑事案件中,很多会跟踪受害人。通过系统,很迅速就可以得到跟踪车辆的信息。智能平台可以为公安各警种提供服务。
沿着智能交通发展的前沿技术,在大数据和物联网等环境的支持下,未来的智能交通,车辆开始成为道路交通信息源,高速行驶的汽车上可以随时接入宽带互联网,手机可与汽车对话,驾驶员的血压和心跳等身体状况在线监控、一旦需要可通过车路交互发给有关单位,大型货车和客车的自动编队运行已经在公路上试验,自动行驶从实验室走向应用的步伐在加快……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01