京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析、数据挖掘、BI及分析型CRM的区别与联系
市场领域里的数据分析,是用数据来描述过去和现状。比如到目前为止,前5年的市场份额,及增长率;目前客户的年龄、地域、收入分布等等。数据分析可以满足大部分的市场决策需求。描述性统计分析中的频数、百分比、交叉表、均数间比较、相关分析应该都是数据分析经常用到的统计方法,而且能够满足大部分的市场调研,和市场状况分析的需求。这部分数据分析结果不需要进行验证,因为它就是在描述事实本身。(抽样的情况下除外,因为需要对总体进行推断)

而数据挖掘,是用历史的数据对将来进行预测的分析,带有决策的味道。比如数据分析的结果说这是“牛”,是因为,数据明白的标明了“牛”,而数据挖掘的结果说这是“牛”,是因为在数据中有“4条腿”、“吃草”、“产奶”、“体重”等等这些指标,所以我们分析出来说这是“牛”,这个得出结果的过程就是数据挖掘的过程,而结果是需要验证的,是可能会判断错误的,这也许是“羊”。客户细分、客户获取、客户响应模型、客户提升模型(交叉销售、向上销售)、客户流失预警这些都属于数据挖掘。
但是这些模型具体包含哪些参数,通过什么数据挖掘方法得到的,建立的过程,以及如何验证的,它们的用途怎样?在市场营销的决策中是怎样的角色。这是接下来要一步步学习和探讨的内容。
BI是最近比较热门的话题,之前我也不知道什么是BI,参与做了一个项目后,有了一些理解。BI实际上是数据分析,而非数据挖掘。CRM等数据库系统的数据通过ETL加载到BI软件中,做出一些数据分析的报表。BI之前的工作模式是:从系统中抽取数据,进行数据的清理工作,在EXCEL或者spss中做出这些基础的数据分析,然后再写成规则的报告。BI之后的模式是:整个过程变成了自动的,只要点击想要看到的报告名就可以自动生成了。实际上一个BI项目,是一个系统集成的过程,在这个过程中ETL是核心。
而分析型CRM,目前还不太了解,个人有些疑惑:分析的基础是数据,数据的质量是决定了一切。BI通过ETL对数据进行了清理和转换。那分析型CRM需不需要ETL,如果不需要,又如何在数据的输入端就保证其质量呢,而且还得保证这些数据的粒度都是产生报表时所需的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21