京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网页数据分析 vs 移动数据分析:有何不同
一篇Web Analytics vs. Mobile Analytics: What’s the Difference?的文章,在我evernote里躺了几个月,最近几天刚好项目节奏不太忙,回顾了下我evernote里的很多待读文章,顺便也边读边翻译了下以便加深学习效果。
但是实际上翻译到一半我就有点后悔了,翻译实在不是一件轻松的事情,有些段落自己读起来觉得挺懂的,但是若要翻译成通顺的人类能够读懂的句子着实不容易,更不要说雅、达的终极要求了。但是还是强迫自己完成了“处女翻”,对于某些自己也无法接受的蹩脚的翻译,我保留了原文,希望朋友们能够帮忙指导。
注:
1. 下文中当提到App时,作者有时叫做App,有时又叫做mobile apps,有时又叫成mobile application, 在翻译时,我有时保留原文App,有时翻译成移动应用,有时又叫做移动应用程序,后来干脆简化之,一律称为App。
2. 文中使用了大量的术语,比如SDK, JavaScript,Cookie , 这些术语也经常出现,就不再进行转译了。如果对术语本身有问题的,可以用google百度一下。
人们日益依赖于移动设备通过移动浏览器以及app与企业进行交互。一份最近的研究表明目前来自移动设备的流量占据了互联网流量的15%。在2012年12月,平板设备的销量首次超越了pc电脑以及笔记本。可预期的是,在2013年年底时,每周将会有接近20亿的app被下载。
如果你现在还不够重视来自你的来自移动设备的流量,你的前景堪忧啊。如果你现在是移动数据分析的新手或者刚刚入门,了解下传统网页数据分析与新兴的移动领域的数据分析之间的区别,将对你非常有帮助。
移动数据分析一般被分成移动网页分析以及移动app分析。移动网页是指人们通过他们的智能手机或平板上的移动浏览器来访问在线的网页内容。很多公司会为这类用户提供指向一个专门为移动设备定制的站点(比较典型的是一个类似于m.example.com的子域名),或者,使用响应式设计(responsive design )让目前的网页内容在不同的设备和电脑的分辨率上实现自适应。当某些企业认识到无论他们的移动网页或主站都无法很好地服务平板用户时,他们也在开始提供平板专用的站点
刚开始时,很多智能手机不支持javaScript或者cookies. 但当前大多数流行的移动设备已经对此提供支持了。所以本质上,移动网页测量网页表现的页面打点方式与传统网页是类似的——只有几点注意事项。
虽然移动网站主要依赖于JavaScript页面打点方式进行数据收集,App跟踪使用一个基于不同客户端的方法,更有利于捕捉本机应用程序的活动。网站分析服务提供商面向不同的移动平台,如iOS, Android, Windows, and Blackberry开发了软件开发工具包(SDK))。分析sdk提供一个有预先写好代码的程序包,开发者可以将这个包集成到自己的应用中。此sdk能够采集到应用相关的维度和度量。
该软件开发工具包(SDK)有助于简化测量过程,因为开发人员并不需要编写自己的跟踪代码。例如,为iOS平台开发的数据统计SDK将提供使用Objective C编写的代码以便使用到iPhone和iPad应用中。一旦app应用被集成并执行跟踪代码,当连接移动网络时,它将能够即时发送数据到数据采集服务器上。
除了使用SDK进行数据统计代码的集成外,移动app的监测也与mobile web及网站有着以下的不同:
heidi注:通常,数据会先存储在应用的内存区域,但是因为内存区域是有限容量的,一般只会限定4-5k的空间,超过这个大小,数据会被传输到每个应用的存储区,进行离线存储。但是若用户很长时间不联网,这些数据不会无休止地进行增加,否则就占用了太多的存储空间。这种情况下,移动统计工具一般会制定一些策略,比如按数据的优先级或时间顺序进行历史数据的删除。存储区容量占用的大小以及删除策略依赖于每个工具的自定义。
这个表格简单总结了网站分析以及两种移动分析领域的异同。
除了这些关键的不同,移动应用分析从网站分析上继承了广为人知的测量实践。网站分析和移动分析虽然不是亲兄妹,也是关系非常亲近的表兄妹。
例如,对于用户参与度的衡量对于移动应用分析来说被特别强调——而在网页分析领域也是如此。当测量移动应用的效果时,用户下载应用只是第一步。企业想要知道他们的应用是如何吸引人,以及用户是否在定期使用。基于事件的跟踪可以让他们洞察用户与应用的不同功能如何交互。类似的,监测应用内的转化漏斗体现出来每个应用在驱动特定产出目标上效果如何。
广告活动跟踪是网站分析的另一支柱,在移动应用分析方面,它也已经浮出水面。举个例子,活动可以与Google Play 应用商店(安卓应用)绑定,然后你可以明白哪场活动和流量来源带来不错的应用下载(注意:iTunes商店目前不支持广告活动相关跟踪。)
只要你注意到了这些细微差异,移动分析代表了数字分析一个令人兴奋的,新的前沿。最后,对于大多数分析师来讲,跨渠道分析(App, 移动网页以及网页)终将到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03