
家电企业将成为未来最大的大数据企业
在过去10年中,科技和互联网领域出现了一股正在涌动的“暗流”,这股力量既是新科技的促成者,也是商业模式的改变者,它就是大数据。根据国际数据公司预测,数据世界已增至4.4亿万亿字节。如果将如此庞大的信息量存储在苹果平板电脑ipad中,叠加起来的ipad的厚度可达到地球至月球距离的2/3,这预示着我们已经进入了大数据时代。
提到大数据时代,就不得不提及IBM、惠普、Teradata、甲骨文等这些推动我们进入大数据时代的企业,他们利用大数据分析平台的优势资源率先开始掘金大数据市场,成为前互联网时代名副其实的大数据引领者,不过随着智能化的发展,这些引领者很可能为被颠覆的对象,而颠覆他们的颠覆者很可能来自引领工业4.0趋势的智能制造企业。
2015年,马云在贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会开幕式上就曾表示,未来的制造业不仅仅是会制造产品,未来的制造业制造出来的机器必须会思考,必须会说话,必须会交流,未来所有的制造业都将会成为互联网和大数据的终端企业。“未来的制造业要的不是石油,未来的制造业最大的能源是数据。”
换句话说,IBM、惠普等大数据企业未来的竞争对手最可能来自智能制造企业。正如马云所说,在智能化的发展趋势下,智能制造企业很可能催生第二类的大数据公司,他们依靠对智能终端数据、智能交易数据和智能研发制造数据的全流程管理,在未来有机会成为最大的大数据公司。在这方面,以长虹为代表的全产业链家电智能制造企业最被看好。
据了解,长虹的产品线覆盖了电视、冰箱、空调、洗衣机、智慧城市产品等,是产品线最长的家电企业之一。这一产业优势加上其对上游压缩机、传感器等家电核心部件以及下游服务的掌控,构成了长虹成为大数据企业的先天优势,也成为长虹转型大数据企业的基本框架:即“智能终端数据+智能交易数据+智能研发制造数据”。
据了解,眼下长虹正在围绕这一基本架构打造“智能化交易平台”、“智能化制造平台”以及“智能化研发平台”,通过交易、制造和研发这3个平台的打造,长虹能够在从客户到供应链,再到制造和服务的全链条上都实现数据化,为实现真正以“客户为中心”的运作模式提供可能,尤其是智能终端数据,可以直接洞察消费者的需求。
伴随智能战略的推进,长虹内部还设立支撑终端硬件智能化应用的强大“云服务中心”,通过智能终端“传感器”进行关联内容的大数据挖掘分析与处理和推送,构建起“用户-移动端-智能设备-云平台”端云一体的生态环,进而实现人与端、端与端、人与社会各内容服务的交互与协同,消费者借助长虹的大数据可以更好的获取个性化的定制服务。
不过,长虹的大数据梦还不仅仅是提供智能化的终端产品和实现企业自身运作的数据化,长虹还希望提供更多的大数据服务,成为一个“智能制造+数据服务”的公司。在这样的目标下,今年7月,长虹开始正式进军智慧社区领域,开启了智慧社区新模式。基于长虹IPP框架,即使是非长虹品牌的智能终端也可以接入智慧社区平台。目前,消费者在这一平台上可以正式体验智慧物业、智慧健康、智慧娱乐、智慧教育等服务。
其实,早在2013年,长虹就提出以“智能化、网络化、协同化”为重点的智能战略。在智能化方向,将强化现有终端产品的智能化;网络化方向,启动建立基于云计算的大数据产业链,与宽带资本合作设立四川虹云创业投资基金,与四川电信在三网融合、物联网、大数据、云计算等领域进行战略合作。
2013年6月,四川长虹还建立了公司云服务事业部,同年8月还与IBM、文思海辉技术有限公司和绵阳科创区管委会共同建设了大中华区首个大数据竞争力分析中心。在这一体系下,长虹还创建了一支大数据团队,建立了一套基于长虹全体系的用户标准,包含11个属性分类和584个标签维度,这是目前为止,没有一家终端企业能够做到的。
在业内专家看来,长虹对家电企业带来的不是冲击,而是一种经营理念的颠覆。与乐视、创维等新老同行相比,长虹大数据战略的野心显然要大得多。长虹基于大数据的全新商业模式意图在于吸纳其他企业之终端为我所用,数据创造价值,而不再是单一的卖产品,而是提供以人为核心的智能数据服务。这不仅是兴起的互联网企业不可比拟,也让其他家电企业鞭长莫及。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03