京公网安备 11010802034615号
经营许可证编号:京B2-20210330
产品经理做市场调研和数据分析的方法
|
产品经理,你对用户的需求了解多少呢?你知道用户想要什么样的产品吗?你想知道用户将会如何看待你的产品吗?你想知道你设计的产品在用户中的口碑如何吗? 是的。每一个产品经理都希望在产品开始立项设计前,得到用户最真实的需求,为自己的产品设计提供良好的支撑;每一个产品经理都希望自己的设计的产品得到用户的认可和亲睐;每一个产品经理都希望用户能在使用产品的过程中不断反馈对于产品改进的意见和建议……那么,我们如何才能得到用户的前期意见和后期反馈呢? 这个时候我们需要的是数据的支撑,只有数据才能让一切更有说服力(前提是真实、有效的数据)、只有数据才能让我们更清楚地了解到我们想法的可行性…… 既然这样,那数据从何而来?这自然少不了市场调研,只有通过对用户的调研才能收集用户最基础的用户数据、从最基础的数据上进行分析,从而了解用户的真实需求。那么,作为产品经理,我们应该如何对市场或用户进行调研呢?调研的方式和方法有哪些?对于调研的数据我们如何进行数据分析呢?数据分析的方法和方式有哪些呢?
一、 产品经理为什么要做市场调研?调研的目的是什么?
1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订MRD; 2、为领导在会议上PK提供论据; 3、提高产品的销售决策质量、解决存在于产品销售中的问题或寻找机会等而系统地、客观地识别、收集、分析和传播营销信息,及时掌握一手资源; 4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务; 5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求; 6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路; 7、调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等; 8、对于全新的产品,调研前PM必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。
二、 市场调研的方式方法有哪些?怎样确定调研的维度?1、问卷调查、用户AB测试、焦点访谈、田野调研、用户访谈、用户日志、入户观察、网上有奖调查; 2、做人物角色分析:设置用户场景、用户角色进行模拟分析; 3、情况推测分析; 4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度)
三、 如何整理市场调研的数据?
通过市场调研,我们收集了不少的数据,这些数据都是用户最直接的对产品的某种需求的体现。作为产品经理,我们视这些数据为宝贝,我们需要将这些数据进行整理,让他们变为珍宝。那我们该如何整理呢? 1、将规范的数据按照维度整理、录入,然后进行建模;不规范的数据的话就必须得自己先通过一些定性的处理,让它变得规范,然后再用工具进行分析; 2、封闭性的问题,设置选项归类即可。开放性的问题,建议还是先录下来,然后再头脑风暴整理出有用的东西; 3定性的,焦点访谈和深访,都可以录音,在事后可以形成访谈记录;焦点访谈的过程中,可以以卡片的形式或者其他的形式让用户做选择题,可以获取少量的有数据性的东西,其他的更多的是观点、方向性的,这个需要在整理访谈记录的时候根据问题来归纳整理; 4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。
四、 如何书写市场调研报告?对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的BOSS,从而获得老板对产品的支持。 1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现; 2、分析用户当前现状,用户对产品的需求点; 3、报告的组成有研究背景、研究目的、研究方法、研究结论等相关内容; 4、根据调研的时候的思路,将报告逐一完善,将数据分析的结论图表化,得出自己的结论总结出趋势和规律
五、 数据分析的方式方法有哪些?1、数据分析需要掌握数据统计软件和数据分析工具(分析工具如SPSS等); 2、数据分析的主要方法有:
(数据分析方法可以参考:《谁说菜鸟不会数据分析》一书)
六、 数据分析报告如何指导产品经理进行产品设计?1、根据调研结论 确定产品核心功能 2、把数据分析的结果加入到整个迭代设计的过程中加速产品的迭代更新 3、评估解决方案的可行性。根据实施的结果再去评估解决方案是否真的可行?是否还需要再改进,依此类推 4、通过数据进行分析,得出用户的行为规律,为产品提供支撑 5、日常的运营分析,及时发现产品问题 6、产品后期设定一系列的运营指标进行运营监控,然后反馈产品迭代(指标主要包括:1、用户的反馈、2、产品的BUG、3、市场的反映、4、产品未来的发展方向、5、点击率、留存率等等) |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31