京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统零售商必须加快拥抱大数据时代
不久之前,传统零售商们还在竭尽全力,希望能够进军线上,而他们会这么想这么做,当然有充分的理由。互联网上,市场呈现爆炸成长的态势,传统零售企业当然不希望放过这样的机会。然而现在,则出现了有趣的一幕,即愈来愈多线上零售商开始反过来进军实体店面了,与那些传统的实体零售商相比,这些新玩家拥有一个前者并不具备的优势:大量关于自己消费者的数据。
哪怕到了现在,电子商务还在迅猛发展之中:2012年,线上销售额跃升16%,达到2250亿美元。不过,无论这个市场变到多大,看上去电子零售也不可能彻底替代实体店购物——即时满足,在地销售支持,甚至还有和朋友一同购物的愉悦等等,都是实体店显而易见的优势。
因此,在传统实体零售商拓展线上业务的同时,线上零售商则在做着相反的事情,这也就不难理解了。Gap(GPS)的线上业务Piperlime和之前纯粹的线上男装店Bonobos最近都在曼哈顿开设了第一批实体店面。
这些灵活的电子零售商锐气逼人,确实有那么一点独特的优势。他们可以收集和分析由交易而产生的大量数据,利用推特甚至是社交网站的评论来确定到底该在哪里开店,店里该卖些怎样的商品。他们可以获取海量的信息——常常都是即时的——并予以充分利用,这一点对于任何零售商都是至关重要的,可以帮助他们理解消费潮流,并采取相应的行动。
毋庸赘言,零售商获取数据,并利用分析技术来得出关于消费趋势和消费者习惯的重要结论,这方面成功的例子已经有很多,但是IBM最新的一次调查研究发现,大多数零售商事实上还有一点畏缩,没有真正充分拥抱大数据时代。调查发现,那些称从分析数据获得了竞争优势的零售商百分比有所降低,从2011年的66%降低到了2012年的63%。必须指出的是,那些真正能够有效利用分析结果的零售商可以更好地理解消费趋势,尤其是在进入新的市场,面对更多的消费者的时候,这是一种千真万确的优势。
可是,开设实体店,就意味着Piperlime和Bonobos这样的电商现在面临着若干挑战,而其中最重要者之一就是任何多渠道零售商都无法避免的:在所有渠道当中都提供一致的购物体验。
Jared The Galleria of Jewelry和Kay Jewelers的母公司Sterling Jewelers在线上和店面同时提供一致的品牌体验方面获得了值得注意的成功。作为整个数字销售渠道彻底检修计划的一部分,他们对Sterling商务网站的浏览和功能进行了优化,并推出了新的消费者特色服务,包括个人定制购物和在线客服交流等。这些投资获得了回报:在上个假期购物季节当中,他们的线上销售额较之2011年猛增了49%。
接受IBM调查的公司当中,大多数——57%——都说他们在研究数据开发路线图,但是只有15%说打算利用大数据。为什么那么多人裹足不前?答案是一些零售商依然有所怀疑。近三分之一受调查的零售商都只将大数据看作是“最近的时髦词”。与此同时,大约四分之一的零售商将大数据定义为“实时信息”,认为即时了解情况,加速决策速度对于零售行业是至关重要的。事实确实如此。
能够即时得知消费者口味、近期购物记录和位置等信息,零售商就可以和消费者建立更密切的,更值得信赖的关西,强化自己的品牌存在感,获得更高的忠诚度。
通过我和零售商打交道的经历,我确信他们对于整理和利用数据的挑战已经非常清楚地意识到了,他们也在寻找合作的机会。竞争对手中很多已经在寻求实现这些价值,这也就使得其他人愈来愈难以止步不前。
调查还发现,他们这么做,近半的原因都是希望更好了解消费者的行为。显然,零售企业是将收集和分析信息视作一种更好理解和预测消费者行为的途径。
从线上走向线下,让之前这些纯粹的电子商务玩家获得了另外一条收集信息,了解消费者真正需求的渠道。同时,这也是个机会,让他们可以更好地与日益挑剔的消费者建立重要的联系,为消费者提供他们真正想要的——量身定制的更好的服务。这一切的要义,难道不正在这里吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03