京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大多数企业不懂大数据
大数据是用来描述数据规模巨大、数据类型复杂的数据集,它本身蕴含着丰富的价值。尽管它已成为媒体和专家热议的话题,但在企业中的热度还相对较低,因为大多数的企业还不知道如何利用它。
一般来说,一旦某个概念被宣传得天花乱坠,人们也开始更关注其背后的意义。Gartner副总裁兼著名分析师Debra Logan表示,大多数企业正开始试图搞清楚大数据是什么。但她认为,95%-97%的组织或者外部研究机构对大数据还只是处于探索阶段,关于大数据实施等相关问题和大数据价值的研究才刚刚起步。
1.大数据实施情况
与Logan意见相冲突的是,微软调查显示,75%的大中型企业将在未来的12个月内实施大数据相关的项目或计划。对此,Logan对该调查的动机和数据都持怀疑态度。
她表示,大数据分析公司的盈利来源于企业越来越多的数据,企业的数据越是非结构化、杂乱无章,大数据的作用才能发挥的更淋漓尽致。
一些组织在大数据领域已经取得一定进展,尤其是零售行业,通过RFID、供应链、会员卡上的海量数据,挖掘出更多有价值的信息,帮助商场更好的运营和盈利。此外,网络和广播行等媒体业也是大数据的先锋用户,例如BBC,就利用大数据分析平台实现用户访问数据分析与优化。
他特别提到,由于银行产生的数据更有组织更结构化,因此银行反而不是大数据先锋领域。不过银行业在大数据领域也积极跟进,例如通过对资金流、结算、信贷、支付等过程产生的数据进行分析,增强客户粘度和挖掘大数据的价值。他们也想了解hadoop,了解这样的技术架构以及如何进行数据分析,但还处于早期阶段。
2.大数据的基础设施投资误区
Gartner数据显示,2013年年底,有关大数据的项目支出将达到340亿美元,其中大部分与大数据的基础设施投资有关。
Logan表示,除了零售和媒体行业,不应让大数据基础设施投资成为企业商业计划的核心部分。她也希望企业的投资计划更多的倾向技术人才,例如聘请数据科学家或者数据分析团队,而不仅仅关注IT基础设施的投入。
很多企业都在努力让大数据的投资带来更多的商业利益,但在很多的情况下,太多的信息不受控,也并不一定能带来与之匹配的效益。因为大多数用户有一个很奇怪的心态–不舍得丢任何东西,企业在删除数据时也举棋不定。但有些数据并不能产生价值,反而会带来投资浪费。企业如何站在专业的角度,对数据进行有效取舍?
大数据存储和处理的成本实在是太高,因此通过第三方获取大数据服务显得更有意义。通过租用第三方的基础设施,企业可分析海量数据,并基于此优化自身业务流程,这种模式的服务,企业何乐不为?
3.大数据的人才挑战
大数据眼下面临的最大挑战就是缺乏具备独特的技术能力或专业知识的人才储备。
大数据的绝大部分数据都是原始数据,它们不能直接读取和分析,需要一些要具备特定的技能的分析师进行基于预言建模或未来趋势分析。
只有借助精通于统计和数学原理的骨干专家,建立高级分析模型,才能发现趋势和隐藏的模式,使大数据真正发挥作用,而一般的开发者以及传统的数据分析师,并不具备开发预言分析应用程序模型的技能,因此需要花费一定的时间和精力使技术团队成员适应大数据的需求。
Logan戏称,目前真正懂得大数据的人目前也许在欧洲核研究中心,以及一些天体物理学应用研究的专门机构,因为这些科研机构产生的数据更海量,这里的科学家们也具备更专业的统计、建模、分析能力。
Logan表示,目前有不少企业正在试图通过咨询公司获得更多专业帮助,但苦于缺乏专业的分析人员,只能自己慢慢摸索。而普通分析师与专业大数据科学家之间的技能储备差距,对市场而言是挑战也更是机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03