京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的搭档-商业逻辑
一个信息化的时代,一个大数据时代,市场营销也随互联网发展发生着翻天覆地的变化。那么在这么一个互联网的高速发展的时代,电商企业该如何更好的把这些资源给利用起来呢?
首先分析一下什么是大数据。大数据,是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
其次,就是商业逻辑。商业逻辑,一般是指网络编程里面三层(或者多层)模型中,介于用户界面和数据库之间的那一层,主要包括一些对提取出的数据进行处理和运算的算法在里面。
那么两者有什么关联呢?
比如,这次双十一网络消费平台的狂欢节中,现已不断出现聚惠算、京东等优秀推广平台的身影,久旭推广也已经成为电商推广和站外引流的重磅推手。它合作的商家超过了十万家,日流量承载能力更是突破十亿。流量这么大怎么才能合理利用起来这才是关键,那么就要关系到商业逻辑。
久旭推广相关人员也提出,大数据需要在量化数据的基础上,加上商业逻辑,才能更好的帮助电商企业做全局性、系统性的决策。
大数据的核心是融入商业逻辑。
在商业逻辑里,必须先懂市场,懂某个领域的消费者真正诉求的变化;其次要懂行业,包括行业的特征、要求和规则;最后才是懂企业运营,把多个支持模块资源有序地整合起来,从而共同创造价值。在这些都具备的情况下,再用量化的数据适度辅佐决策,在商业逻辑的主导下,才能真正发挥量化数据的作用。
久旭推广人把商业逻辑看成真正需要解决的难题,因行业不同、企业不同、类目不同、时机不同,商业逻辑都会有所变化,这是一种动态平衡的艺术和哲学。缺乏商业逻辑之本,有量化数据也是天马行空,相反缺乏数据单有商业逻辑也是虚无。
数据不能代替商业逻辑,但是数据可以修正、调整商业逻辑。一个决策的产生,要靠部分数据、部分经验、部分直觉。决策的事并非一句大数据便能解决。而两者结合便是现在最受欢迎的营销模式---大数据精准营销。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31