京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 是一个革命性的概念
我和许多经理人讨论大数据现象时,也同样提到,我很喜欢大数据这个概念的一切,但唯独不喜欢这个名字。大数据是一个革命性的概念,它可能握有改变几乎各行各业的能力。不过,基于某几项塬因,这个专有名词本身大有问题。
第一个问题是,「大」只是这种新型态的数据有别于既有数据的面向之一,而且对许多组织而言,「大」并非最重要的特质。根据2012年由大数据顾问业者NewVantage Partners针对大型组织的五十名经理人所做的一项调查,在大公司里,他们所处理的较属于「数据缺乏结构」的问题,而非「数据量过于庞大」的问题。在该调查中,有30%的受访者表示,他们所处理的大数据问题主要在于「必须分析来自多个来源的数据」;另有22%的受访者则主要聚焦于「分析新型态的数据」;还有12%的人主要是「分析动态的数据串流」;只有28%的受访者是以分析大于1TB的数据集为主要工作,而且这群人当中有13%是在处理介于 1TB与100TB间的数据集,但若以大数据的标准来看,这样的数据量并不算多。
「大数据」这个称呼还存在着其他问题。「大」这个字,很明显是相对的──就算今天看起来很「大」,并不表示到了明天仍然算「大」。而且,前述调查也显示,对一家组织而言的「大」,对另一家组织来说可能很「小」。我个人基本上认为,「大」应该指的是1/10PB以上的数据,但就算数据真的多到会造成影响,也不过就是必须购买更多硬件来储存与处理这些数据而已。
有人以三个V(量〔volume〕、庞杂程度〔variety〕、累积的速度〔velocity〕)来定义大数据,但有人又另外加了几个V(真实性〔veracity〕、价值〔value〕──或许下一个V是「能够花钱搞定」〔venality〕),然而这样的描述也有问题。我认同这些都是大数据的重要特质,但假如你手边的数据只符合其中一两项的V呢?难道你就因此只握有三分之一或五分之二的大数据吗?
另一个问题是,太多人(尤其是相关软硬件厂商)已经把「大数据」一词拿来指称任何接受分析的数据,或者夸张一点,连纯粹呈报用的数据,或传统的企业内部资讯,也全都算在内。相关软硬件厂商与企管顾问,把任何热门新字眼拿来套用在自己既有的产品或服务上,已经是他们的惯用伎俩;在大数据方面,他们肯定也使用了这样的手法。假如你已开始在阅读谈论大数据的书籍、文章或广告,千万小心,里头若提到「数据导向决策」或是传统的数据分析手法,你所吸收的想法或许很有用、很有价值,但并不能算是什么新东西。
基于定义「大数据」时的上述问题,我(以及我徵询过其意见的一些专家)估计,这个不幸的术语,可能会比别的术语短命。媒体与新创企业都爱用这个字眼,但我已观察到,一些在大企业从事资讯工作的人,尤其是在银行、运输业者等已经长年掌握庞大数据的企业服务的人士,都不太爱用这样的字眼。简单讲,他们认为,这一代的新数据来源与型态,不过是先前好几代新东西的其中一代而已。当然,这并不表示「先前大家认知为大数据的那种现象」将会消失。假如你是要描述过去十年左右冒出来、种类繁多的大量新型态数据,就我所知,「大数据」依旧是最好的统称术语。
不过,由于这字眼实在太不精确,企业必须多解构一些,才能修正自己的策略,并且让利害关系人知道,管理团队有意如何运用这些新型态的数据,以及哪些类型的数据最为重要。大数据当然有许多不同的变种可以选择─而且每一种特质都有多种可能的选择,如图表1-2所示。你可以先从每一行之中选择一项。
换句话说,你与其说「我们正针对大数据推动一项硬件计划」,还不如说「我们正准备分析来自于ATM与各分行的影音数据,以求对顾客关系有更深入的了解」,会比较有建设性一些。或者,假如你服务于医疗业,你可以决定要「整合电子病历与基因数据,提供个人化的治疗方案」。此举除了有助于厘清目标与策略,也有助于避免无止境地讨论涉及的数据量究竟是大还是小(事实上,即便发展的是值得崇敬的出色事业,还是有少数企业承认,他们只有「小数据」需要处理而已─ 由此我也学到,若要让一个专有名词真正管用,就必须把彼此相对的两种情况都囊括进去).
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09