京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对银行大数据应用的一点思考
在《大数据时代》广为流行之时,就拜读了该书。当时的第一感觉是,大数据时代是对传统统计学的一大挑战,因为大数据的分析无需取样,直接避开了传统统计学的一大前提,也就避免了因样本取样本身带来的误差。得益于当前发达的网络技术和计算机性能,大数据时代的数据分析是全量的数据分析。我想,这也是该书为什么一经推出就如此火热并迅速推广至各行各业的原因。梳理一下近期的思路,谈一谈自己对大数据于银行业务的一点思考。
一、银行拥有得天独厚的大数据优势
看完书后的很长一段时间,我都在思索大数据的思维和方法如何运用在工作中。因为自己每天都在与大量的数据、各类的报表、不同的系统打交道,深感银行数据的全面、多样与深不可测。网上银行、手机银行、财富管理、信用卡平台等系统内的客户交易数据,核心系统、信贷系统、客户关系维护系统、计价系统等客户的基础信息,这些是多少外部咨询公司可望而不可及的数据。如此丰富的信息,如果只是让她们停留在数据阶段,真是太可惜了。虽然,我已经通过不断提升excel的操作水平来简化和分析数据,但深感其用途远远不应该只是每日通报而已。如何科学利用这些数据,并以此来推动工作开展,是自己一直在思索但总有点心有余而力不足的问题。银行的大数据,内容庞大,超出一般人的数据处理能力;大数据于银行,是新的竞争领域,是新的思路也是新的挑战,理应是新的工作重点。
二、银行大数据应用的主要方面
银行归根到底是金融服务业,产品的研发、服务的开展无疑都是为了吸引和留住客户,提升综合竞争力,而数据则是服务好客户的前提和保障。就自己浅显理解,我觉得大数据可在如下几个方面促进业务开展。
一是区域化管理。不可否认,大到国家、省份、地市,小到不同城区、不同社区、不同单位,文化差异和生活习惯是有所不同的。我们所辖的网点分布在不同的地方,如何因地制宜地推出适合当地居民的产品和政策,必须对不同片区、不同社区、不同商圈的客户进行统计分析,分析区域之间客户存在的工作、消费、生活习惯差异,寻求区域内部客户之间存在的工作、消费、生活习惯共性,以提供有针对性的营销计划,根据地域优势来分配主要的业务经办行,打造专业的队伍服务特定的人群,促成资源的合理配置。
二是差别化服务。从IT蓝图上线起,我们中行就提出了经营模式从“以产品为中心”向“以客户为中心”的转变,服务模式从“标准化服务”向“个性化服务”的转变,这些转变落实到具体工作中,就是服务形态和方法的转变。通过我行自身的各种渠道、各类系统整合客户信息,已经形成了一个基本的数据库,这个数据库里包含了客户的工作、家庭、账户、联系信息等客观数据,如果能通过借助外部平台,引入客户喜好、情绪等主观因素,则可以更加精准地判断客户的态度立场、情感倾向等,进而可以相应地分析可向客户推荐的产品、服务、定价政策,既能迎合客户的需求,又能提高营销的效率和效益,真正实现“精准化营销”。
三是风险管控。这是目前为止,我的日常工作中做得最多的。对于风险控制我们多数时候是被动的,到了贷款出现逾期才意识到借款人资金、信用出现了问题,对于这类现象首先追究的是客户经理的贷后管理工作不到位。但很多逾期的贷款客户在其资金链断裂前,其经营实体和抵押物情况等是没有太多变化的,为了尽早地发现问题,现在的贷后管理,不能仅仅局限于上门回访,而应通过系统监控和数据分析加强预警防控能力,及时地发现客户的资金异动,以便采取及时有效的措施防范风险。随着信用卡的普及,信用卡的消费和还款情况一定程度上反映了持卡人的资金实力,通过分析贷款客户的信用卡使用情况及时发现潜在风险,尽早开展贷后催收和诉讼工作,避免逾期后再催收的措手不及。
三、银行大数据运用可采取的措施
有了数据,如何运用数据才是更加具有挑战性的工作。对于如何运用大数据,我觉得首先要丰富数据采集渠道,拓宽数据来源,我们掌握的客户信息多为金融信息,数据准确可靠,但缺乏客户行为方面的信息,可依托互联网、电商、微博微信等社交平台充实数据资源,以更加全面了解客户的真实需求;其次要加强内部数据的整合运用,虽然目前我们的数据多,但是数据较分散,各自为政,缺乏交叉运用,各部门各条线应加强数据的资源共享;最后是要建立和培养一支专门的数据分析队伍,整合各专业领域的员工,负责数据的采集、简化、分析和应用。在保护客户隐私的前提下,还可以委托专门的数据处理公司开发专门的程序,以利于更加方便快捷地开展各项工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09