
大数据改革时代我们该如何去应对
对大数据进行进一步深度的分析,并挖掘出对企业发展有利的数据,这是现代企业最常见的行为。而通过对市场的整体分析了解经济增长的内动力以及结构变化和调整,进一步调整产业,以便更好的发挥企业优势,赢得市场,成为同行中的佼佼者,这是任何企业都希望看到的。但是,从大数据提出以来,越来越多的企业表示自己似乎看不懂,大数据变化的太快,让人捉摸不透。而对大数据的改革,我们该如何应对呢?
一、化零为整
数据是零散的,就像一盘散沙,分散在世界各地,企业要想分析市场,就要将这盘散沙捧起来,运用数据分析技术以及特长分析、挖掘埋藏在数据当中的宝贵价值,实现更好的决策,推动企业相关决策的进行。
二、去糟粕,挖精髓
数据泛滥的最直接后果就是数据中有大量无用数据的存在,这些无用的数据会对数据分析技术人员的分析行为造成一定的困扰,对此,技术人员需要对其进行整理、清洗,去掉无用的数据,将有价值的大数据挖掘出来,进行科学管理和分析,严格控制数据的质量,做到真正的数出有源、真实可靠。
三、重视数据源
大数据时代,数据来源不可能仅有一点,尤其是在行业分析当中,不仅要分析自己行业的发展,还要分析竞争对手的数据,更甚者需要分析市场环境的数据。多方面下手才能真正分析出到底是怎么回事,该如何去应对市场危机。
然而,不少企业用户在分析数据的时候,不舍得下血本,只是简单的对自己产品的用户行为以及各种数据进行分析,并不会投资分析大环境以及竞争对数,这样可能导致企业在发展过程中,看不清市场环境,无法做出正确的判断,也就是我们所说的决策失误。
当然,大数据涉及各行各业,分析大数据,不可能仅看一方面,也不可能毫无预算的去分析所有的数据,这样会导致很多浪费,也会增加企业的成本支出。作为现代化企业,最好的做法是转变自己的经营思路,加强各部门之间的沟通协调、保证数据收集的精准,为企业大数据的发展提供更好的环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04