
HBTC2012峰会在北京举行,俄亥俄州立大学的教授张晓东老师就并行处理在大数据分析中所面对的挑战做了精彩的演讲。
张晓东重点讲了并行计算对大数据以及现有的高性能计算的计算模式是否适应大数据。第一步先讲一下在大数据中有哪些非常广应用,现有的数据库是不能使用的,很简单数据量太大了。同时,大数据的要求不光是高性能同时还要有更高的。而且没有什么硬件支持,都是用非常廉价的硬件。第二个问题都是学科的研究,因为它的应用范围非常广。数据的格式等都不一样。第三个问题是应用需求非常廉价的架构,所以可以看到现有的数据库是不适合的。它的价格是非常昂贵的,所以我们我现在用的主要是用开源的。
张晓东认为今天我们进入到一个“数据是检验真理的一个重要的标准”的时代。对算法有了新的需求。我今天的讲座想主要是聚焦在计算模式上的变化,计算尤其是系统设计发生了什么样的变化过去我们用的是高性能计算的模型。
对大数据来讲最主要的是在模型中做计算的约束是非常大的。我们看BSP模型,为什么在过去用到高性能计算上,今天在大数据不能用。之后再做并行计算,之后再做篡数,过去做的所有的高性能计算都是围绕这个模型来的。
如果我们有了硬件、有了软件,22年前它就总结了高性能计算,它画了一个圈,我们所有的努力都在这里面。
BSP模型有数据吗?因为高性能计算数据并不是重要的,主要是以计算为主的。大数据更不在里面了。今天做大数据计算的时候,是不能与硬件相关的我不能说找到英特尔说要造一个大数据。
所以我们现在用的。我们的模型是今天高性能计算是不能保证的。
今天为什么要做并行计算,并行计算给我们带来了什么样的障碍?scale-out是什么概念?张晓东认为给大家举一个例子,2008年的时候Google用processed算法计算一个PB的计算量,用了1个小时2分钟。2011年10PB的数据用了6小时27分钟。我们比较要有非常高的并行度。我们在高并行度下面遇到的第一个困难是,没有特殊的通信硬件来给我们支持。这不像高性能计算。第二Hadoop的模型非常简单。第三,没有软件的工具来帮助我们做。另外,当你放下了数据以后是不能传输的,基本上是不能动的。今天这个会议是为了Hadoop。我们对引擎本身是没有抱怨的,问题是如何利用引擎处理大数据。如果我们只永远是的引擎只能做简单的分析。这个引擎有非常好的优点,第一它的dependency是非常小的。另外一个工作是非常简单的。我们必须要有高可用性的大数据。
如果一个数据在做负载的时候,我们要注意,如果用不好也是费用很高的。看到了当application,你想做一个的话,现在的是不支持的。如果是在不同的系统上,他们两个想做一个communication也是不支持的。
第二个问题,如果一个使用者想换个思路。如果你有一个MP可以直接翻译过去,通过机器提高了各种各样的计算。人在实际中用手来写是不一样的,75%是又机器来生成的。他在做项目的时候可以节省4倍的时间。
最后一个问题,在现有的Hadoop没有给你任何的信息,用户是不知道的,你怎么放进去的时候取这个数据的时候要非常地低。你做这样的设计是不是也改变了Hadoop的引擎。最后我们发现考了三个方面都是很基本的话,那么也是它广泛应用的原因。他们现在在整个的关键信息在什么地方?从Facebook的角度来讲,这个是一个Hadoop,用它的时候第一要存到高的数据中,如果一个用户首先用的是YSmart做示范。一个Hadoop是一个大数据中心的引擎。本身它就可以做分析,我们一个引擎只能完成一个转的操作问题是我们如何将引擎最原始的动力化为今天的支撑。因为我们相信Hadoop是一个引擎并且起了很重要的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14