
大数据正在改变经济意义
微软CEO比尔·盖茨说过:“信息流是企业的命脉,数字神经系统会使你以思考的速度经营商务,这是在21世纪成功的关键。”确如其言,21世纪的企业发展越来越凸显信息的重要性。如今的情形,并非是没有信息或者信息不够,而是经常表现为“到处是水却没有一滴水可以喝”。柯勒律治这句诗歌,正好用来形容如同宇宙大爆炸般飞速扩张的“数字世界”。建立在云计算基础上的大数据分析,成为了企业竞争和决策行为的焦点。
根据一项估计,人类历史上90%的数据都在过去两年中产生。2014年,国际数据公司预测,数据世界已增至4.4亿万亿字节。如果将如此庞大的信息量存储在苹果平板电脑ipad中,叠加起来的ipad的厚度可达到地球至月球距离的2/3。这预示着我们已经进入了大数据时代。
当传统的葡萄酒业遇上大数据,嘉露酒庄和IBM实现了双赢互惠。IBM有好几个智慧地球项目与水资源保护、城市超本地化天气预报有关,这些先进技术被运用到了农业经济学中,研究人员根据葡萄园在地温、种植方式、土壤类型等方面的差异实施积极有效的个性化管理,试点项目取得了令人鼓舞的效果。嘉露-IBM实验的成功,为数据收集与分析提供了灵感,并转化为行动,带来了可观的效益。大数据主义时代已经来临。
美国《纽约时报》资深撰稿人,媒体记者史蒂夫·洛尔,在其新著《大数据主义》中选择IBM作为书的主角之一,重点介绍该公司在大数据领域的发展历程。IBM通过推广“智慧的地球”实现了企业转型,在商业与技术的交汇处找到用武之地。IBM的成功表明,人们真的在利用数据引导决策活动,大数据正在改变经济的意义。在作者看来,大数据不仅是技术革新,而且将引发管理革命,大数据不再执着于因果关系,而是强调“万物皆有关联”。从数据中寻找相关关系,通过这种关系对未来做出预测,是大数据方法论的核心思想。大数据无疑为人类认识世界、解决问题提供了比传统更全面、更周密的视角,可以帮助人们更容易看清事物的复杂性,并通过分析采取更高效的行动。
作者提出,煤、铁和石油是推动工业革命进程的三大生产性资产,而信息经济时代的主要原材料则是大数据。《大数据主义》有见地的解释了大数据技术如何引发一场新的革命,并促进新一轮经济效率的提高和创新。互联网规模的海量数据集将被用于几乎各个领域、行业和企业,探索、预测和提高效益。作者还进一步探讨了新技术革命如何改变人类决策方式——人们更加依赖于数据和分析,而不是直觉和经验;同样,大数据还将改变领导力和管理的本质。
史蒂夫·洛尔的日常工作包括负责撰写《纽约时报》的科技博客Bits,因此他的文风通俗平易,十分适合大众阅读。他围绕自己长年任职编辑、记者期间采访的代表性人物和知名公司,通过突出典型、以点带面的样本分析方式,清楚地传达了“大数据主义”理念。该书主角除了IBM,还有一位年轻人——杰夫·哈梅巴赫。《大数据主义》既像一部大数据代表人物杰夫?哈梅巴赫的成长史,又像一本关于大数据进军不同领域的评论著作。作为大数据主义思想的典型代表,通过哈梅巴赫在脸谱网、Cloudera等公司以及医疗领域职业生涯的变迁,不难看出数据技术与方法不断发展的步伐。哈梅巴赫率领的团队,帮助企业使用Hadoop分析庞大的数据,并宣称“把数据给我们,我们来管理”。史蒂夫·洛尔通过IBM和哈梅巴赫两个典型案例以及书中涉及的微软、乔布斯、谷歌等企业情况,运用流畅的语言生动揭示了大数据对于企业发展的特殊意义。
本书的更大亮点是,强调了大数据的主题是决策行为。信息资源的价值在于充分利用,而如何利用又取决于人的决定。这个观点将本书作者从“唯技术论”中解脱出来。作者提醒了计量方法可能存在的局限性。声音过于嘈杂,容易让人致聋。那么,到底哪些数据是有意义的?计量必要性与计量短视性间会产生冲突和矛盾。作者并不讳言数据分析可能导致的失败。例如,金融领域采用数学模型的危险性在次贷危机中已经暴露无遗。作者认为,虽然决策活动对数据与分析的倚重与日俱增是大势所趋,但同时,我们还要让常识发挥应有的作用,经验与直觉仍然在决策中占有一席之地,而好的直觉又往往建立在大量数据的综合基础之上。此外,还必须时刻警惕,云系统并非多数人想象得那么可靠,一旦其脆弱和不稳定性导致事故,就可能像病毒迅速扩散,难以挽救。而且,企业收集信息过程中,对个人隐私的侵犯以及道德伦理上的各种争论,仍然是大数据经常被诟病支出。奇虎360公司董事长周鸿祎提醒道,“大数据时代带来一个非常重要的挑战,就是安全的挑战。平衡好大数据应用与用户隐私之间的关系,应该成为企业关注的焦点。本书在向我们展示大数据的商业前景和经济潜力的同时,也提醒我们警惕伴随大数据而产生的隐私"黑洞"”。
思路决定出路,眼光影响成败。如何应对迎面而来的大数据时代,企业需要考虑很多问题:数据采集的渠道够广吗?数据关联能不能找到规律?决策方向是不是正确?企业行为有没有到达公众容忍边界?企业能不能在实现个体利益的同时做到普惠大众?在可预计的未来,这些都将很快成为普遍的企业生存法则。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01