
数据分析浅谈
从以下几个方面入手,什么是数据分析,怎么做数据分析,为什么要做数据分析,如何才能做得更好。
1.什么是数据分析
所谓数据分析就是将产品相关的数据收集整合,然后利用特定的方法去分析这些数据,从中发现规律或是得到结论。
这些特定的方法可以包括专业的统计学、数学建模等,也可以从数据的维度和广度出发,数据收集或对比、总结相似数据的相同性、异常数据出现的可能原因,这类分析比较偏人文学科,可能数学难度不高,但是利用独特的数据角度,同样可以得到非常有价值的结果。
2.怎么做数据分析
不论怎么样做数据分析,我们都需要明确数据分析的目标,清楚每个原始数据和中间数据的意义,从中发现问题、得到结论或是验证想法。
当你确认了数据分析目标之后,需要的就是去确定哪些数据对于目的是有用的。因为数据有很多,不可能将所有的数据考虑到,所以这时候就需要根据经验或是业务知识去找到最可能和目的相关的原始数据,整理收集这些数据,方便以后的分析。
目标清楚、原料充足之后,我们便开始考虑如何利用这些资源去做出一道大餐。
比如在APP的数据分析中,可以得到的数据有新增用户、活跃用户、留存、渠道流量、版本数据、行业数据、自定义埋点数据等,这些数据目前还都是质量不错的原材料,还需要经过大厨的烹饪才能色香味俱全。
那么这时候大厨的厨艺就是数据分析的关键了。有的人精通数学,懂得如何快速准确建模;有的人通晓业务,明白每个数据背后的商业意义;有的人长于世 事,能从数据中看到隐藏的情感并为己所用;有的人善打地基,清楚稳定的数据架构可以为发展提供源源不断的动力。总之,利用不同的手艺做出来的数据大餐各有 所长,互相支持,缺一不可。
3.为什么做数据分析
数据分析永远都是为了产品的发展而服务,一切的目的无外乎:获得用户、留住用户、增加收益,而数据正好可以告诉我们在这三个点上的表现,同样这也是最客观和准确的途径,为我们的策略提供参考。
所以数据分析就是了解产品、暴露问题或发现惊喜(真相)、分析原因、思考方案、结果验证。
4.怎么坐得更好
评价更好是从目标出发,当目标的完成度越高、质量越好,那么数据分析的工作就是在变得更好。
除了前面提到的目标明确、方法牛逼外,同时也要让团队或负责人清楚了解到产品的真实表现,告诉他们现在存在的问题,与团队一起及时找到问题解决方 案,明确如何调整产品策略或是制定新的玩法去提高产品表现,即获得更多的用户、留住更多的用户,增加产品的收益。所以在这一过程中如何让别人更快更好的理 解你的分析,让他们支持你的工作也是很重要的一环,甚至比数据分析本身还重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18