京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零售业拥抱大数据:用数据读懂消费者
在过去一年,"大数据"的概念持续加温,热度已经覆盖除互联网以外的各个行业。关于大数据的概念已经无需再多说,大数据不仅仅是“看起来很美”,如何有效运用大数据创造商机,让大数据更好的发挥其自身的价值,为企业带来更多的效益,成为了各个企业亟待解决的问题。
大数据的起源要归功于互联网与电子商务,但大数据最大的应用前景却在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍然占据了国家GDP的绝大部分份额。
具体来讲,中国最需要大数据服务的行业就是受互联网冲击最大的产业,首先是线下零售业,其次是金融业。受电商的冲击,国内很多零售巨头都增长严重放缓,甚至遭遇负增长,线下零售已经到了不得不变革的危机关头。我们看到银泰百货、王府井百货、万达集团这些具有创新意识的传统巨头开始利用互联网和大数据来改造线下商业。坐拥成百上千门店的传统零售企业,该如何面对迅速兴起的互联网战场?拥有海量会员信息和购买记录的传统零售企业,在逐渐变革的消费市场中如何利用数据优势迅速抢占市场?
在所有的零售渠道中,实体店占据着绝大多数的市场份额,但是线上渠道的吸引力在迅速增强,并且以中国消费者尤为突出。随着线上线下购物逐步融为一体,生存和成功将取决于零售商通过各种渠道接触到消费者的能力,更重要的是其为消费者提供多渠道的无缝连接购物体验的能力。如今掌握主动权的消费者希望能同时享受线上线下两种渠道的优点,并将会到那些能够提供优异的多渠道购物体验的零售商那里购物。
如何建立一个线上线下无缝连接的品牌和购物体验方便消费者的选择,从而赢得顾客的忠诚度和持久的客户关系?这些曾经棘手的问题,如今都迎刃而解。国内大数据技术服务商百分点推出的大数据管理平台(BigDataManagement,以下简称“BDM”)通过整合第一、二、三方的用户数据,对数据进行清洗、加工和建模,为企业的战略、运营、管理、市场、营销等提供各种数据产品和应用。传统零售业拥有海量数据。每天,每笔交易、每个订单、每次促销、都会产生无数的数据。一个值得关注的现状是,目前大部分的企业还没有将这个数据利用起来。这些数据的整合和解读将是企业无形的资产,并成为企业最大的优势,帮助传统零售企业在瞬息万变的互联网市场迅速抢占一席之地。
那么,零售商们应该如何将大数据运用到商业活动中呢?来看看百分点是如何描绘的。
A用户是一位标准的摄影发烧友,我们知道他最常浏览的网站就是“摄影爱好者论坛”。某天当A用户打开一个网站准备浏览今天的新闻,却被相机厂商发布在网站首页的广告迅速的吸引。A用户发现正是他关注的“新款镜头”,于是A用户决定去实体店看看。是的,百分点BDM通过A用户的浏览习惯等知道他是个理智型消费者”。
当A用户来到实体店时,一场数字化旅程即将开始。作为某商城的会员,A用户用商城会员卡买了咖啡,发现购物小票上显示“会员今日购买数码类产品享受9.0折优惠。登陆该商城免费的Wi-Fi时,A用户又收到商城推送的个性化推荐信息“最新款镜头,今日购买可低价换购相机包”。最终,A用户以优惠的价格买下了心仪已久的“最新款镜头”,并得到了“x商城”低价换购的“相机包”。
在上面的故事中,“摄影爱好者论坛”、“相机厂商”、“网站”、“商城”都是百分点大数据家族的一员。百分点BDM收集社交媒体、论坛和第三方的海量数据,并加以分析整合,宏观用户画像显示“85%的消费者在购买单反之后的两年内会购买镜头。”
以上只是百分点BDM对用户分群、画像,并将这些信息利用到商业活动中的举例。事实上,98%的中国消费者希望零售商能够利用他们掌握的信息提供个性化的促销和建议。在这个领域中,百分点关注两方面的内容,一是将线上线下数据的打通,为用户提供一致的购物体验;二是将电商的经验运用到传统卖场,为他们提供新的营销手段。
百分点BMD通过对海量数据的整合和解读更好地了解和预测消费者行为,掌握消费者偏好和需求甚至终生客户价值,以便把握住全新的促销机会,为他们提供更多个性化的产品和服务。通过融合多方数据,零售商为消费者提供创新的购物体验,促进消费者的品牌忠诚度和重复购买,进一步实现零售商的利润和市场份额的增长。
作为大数据服务商百分点一直致力于大数据的技术的研发和应用。百分点利用大数据分析技术为用户画像,以及利用用户画像来帮助企业实现个性化服务。在任何一门生意中,能够读懂用户并分析用户数据来预见未来都是行之有效的,这也是未来商业创新发展的必由之路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02