京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据把我们带向何方
据统计,人类历史上90%的数据,都在过去的两年中产生;今天,数据世界已经增至4.4亿万亿字节,如果将这些庞大的信息量存储在苹果iPad平板电脑中,叠加起来的iPad平板电脑,其厚度相当于地球到月球距离的2/3,这或可意味着人类已进入大数据时代。
蒸汽机的发明,使煤、石油成为推动工业革命的重要原材料;现在,计算机的发明和联网,将使大数据成为推动信息革命的重要原材料。美国作者史蒂夫·洛尔在《大数据主义》一书中,解释了大数据技术将如何引发一场新的革命,并告诉我们:大数据将在哪些领域大放异彩,又在哪些领域需要保持警惕,以及大数据将把我们带向何方?
让大数据大放异彩的领域
大数据应用于很多领域、行业,同时,它还会改变人类的决策方式。大数据主义者认为,所有决策,都应当逐渐摒弃经验与直觉,并且加大对数据分析的倚重。
让我们来看一下美国的药品销售企业麦克森公司的案例:在经营活动中,麦克森公司产生了庞大的数据,IBM公司利用这些数据,为麦克森公司建立了决策模拟模型。借助这个模型,麦克森公司可以完成更精准的预测和更高明的决策。麦克森公司经营的一些药品如抗癌药品和专用抗生素等,价格极高,需求极不稳定,麦克森公司以前的做法是:靠“猜测法”在几个分销中心都储备这类药品,再根据需要调货。通过IBM建立的决策模拟模型得知,尽管空运成本是卡车运送成本的10倍,但如果把这些药品全部储存在孟菲斯郊区的中心仓库,再空运给客户,这些昂贵药品的库存会降低1/2,节省的成本,用于支付高昂的空运费还有结余,并且这些药品的按时送达率,会由以前的80%上升到99%。最终,麦克森公司通过对大数据的应用,将库存成本降低了10亿美元,效率提高了约13%。
大数据在商品零售业也有光明的前景。世界零售业巨头沃尔玛,通过大数据统计与分析,发现男性顾客在购买婴儿尿片时,常常会顺便买上几瓶啤酒,于是,他们推出将啤酒和尿片捆绑销售的促销活动,非常有效地提高了啤酒销量。另外,沃尔玛在挖掘历史采购数据时发现,在预报有飓风通过的地区,消费者购买草莓果酱馅饼的数量是平时的7倍,而飓风到来之前,最畅销的商品是啤酒。于是,他们在飓风警报到来时,已经储备下足够的草莓果酱馅饼和啤酒,这样既充分满足了顾客需要,又获得了较好的销售业绩。
《大数据主义》一书中诸多案例告诉我们,现在及将来,那些价格越来越低廉的电脑与软件,再加上越来越开放、高效的网络,将意味着更多的企业参与到应用大数据的方法中来,提高效益或制定战略。
大数据的“黑洞”
当然,大数据在带给人们便利的同时,也隐藏着一个巨大的“黑洞”——安全问题。例如,美国最大的数据代理商,是总部位于阿肯色州小石城的安客诚公司,该公司已搜集了数亿名消费者的数据。该公司宣称,他们通过官方档案、购物数据、网上浏览习惯等渠道,归纳了消费者的大量信息,从而得出大多数美国成年人的相关数据,比如人们的年龄、种族、性别、党派、对度假的期望等,其深入细致程度是美国政府和其他互联网企业所无法比拟的。安客诚是向企业提供消费者信息的杰出供应商,也同时成为隐私权倡导者们最讨厌的对象之一。通过技术获取最大利益的同时,如何保护好人们的隐私权?怎样找到合适的平衡点?这是需要人类认真思考的重大问题。
到目前为止,“怎样才能将隐私方面的风险降至最低?”还没有明确的答案,但已形成了两个泾渭分明的阵营。一个自称“开明商业群体”的阵营认为:数据是一种资产,是信息经济的流通货币,因此数据像钱一样,只有自由流通才能创造最大的价值;他们主张,在制定保护隐私的规则时,关注点应该是“数据的使用”,而不是“数据的收集”。但是,“消费者与隐私权倡导者”阵营对仅通过限制数据使用来保护隐私权,表示怀疑和反对。
阿莱克斯·彭特兰,是麻省理工学院媒体实验室的一个团队负责人,目前,他的团队正在开展隐私权项目的研究和实验。他竭力主张“新型数据交易”,其中包含三个基本原则:“你有权拥有你自己的数据,有权管控这些数据的使用,有权选择你认为合适的方式销毁或发布这些数据。”2014年,奥巴马政府的大数据报告也再次呼吁,应当按照彭特兰提议的原则,加强对消费者数据的管控。与此同时,开发应用于数据管理的隐私保护工具,也成为一个重大的商机。
该书作者还从更宏大的视角,来观察大数据。他深刻地指出:如同宇宙大爆炸般飞速扩张的“数据世界”,不仅日益成为外在客观物质的“镜像”,而且正越来越多地包含人类自身行为的追踪和记录,成为人类观察和认识自我的一面“大镜子”。在大数据的帮助下,我们将会越来越清晰地看到这个世界的本来面目,也会越来越清晰地认识人类自身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09