京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据大而无用
互联网的发展可以用数据来衡量,大数据被世界经济论坛称为是新的石油、新的资产类别,其革命性不亚于蒸汽机车、电网、钢铁、空调及无线电。
2005年 互联网的数据总量为 300 亿 GB,思科估计 2013年 的规模预计超过当年的 20 倍。1990年 代至 2005年 被视为是互联网的第一波浪潮,这波浪潮为我们带来了电子邮件、Web、网上搜索以及宽带。这第二波浪潮,就指望着大数据给经济提供动力了。
但有个小问题:尽管 Web 流量飙升,但经济正处于萧条期。得益于计算机和互联网的革命,自 1970年 代一直稳步增长且持续到 2000年 代的生产率,自 2005年 以来却出现下降,这正好是大数据冒出来的时间。
因此一些经济学家开始质疑,大数据是否具备第一波互联网浪潮的那种影响力,与几个世纪的工业革命更没法比。有一种理论认为,大数据业是通过调动现有企业为了客户进行竞争,从而让经济更加繁荣,而非创造新的根本性的机会。
当然,有些公司,如 Amazon 和 eBay 等的确是为客户而战。但其他的公司却在蚕食传统产业的市场,广告、媒体、音乐、零售等无一幸免。
明尼苏达大学的经济学家 Joel Waldfogel 认为,数字产业与实体界是此消彼长的关系,所以认为数字的崛起会给经济带来净增长是疯狂的。西北大学的经济学教授 Robert J. Gordon 则认为把大数据比作石油只是个噱头。上个世纪,石油让交通革命成为可能,如果有人认为个人数据堪比石油和汽车,那一定是没有体会到上个世纪的现实(汽车取代马匹,空运取代道路)。
但也有经济学家认为大数据的经济冲击只需几年就将到来—只要大学培养出相应的数据处理人才,并且数据驱动初创企业开始招兵买马。当然,衰退可能会以经济学家无法掌握的方式掩盖数据革命的影响。还有人甚至怀疑最终我们当前对大数据和 “云” 的理解框架可能只是一座海市蜃楼。
数据必须充分发挥经济潜力才有可能。当然,像营销、制药业现在每天都在大量应用数据。
masFlight 就是这样的公司。这家公司采用大量数据来帮助航空公司减少燃油消耗并改善总体性能。Josh Marks 是这家公司的 CEO,尽管他的第一个使命是帮助自己的客户与其他航空公司为了顾客而竞争,但他也相信像自己这类公司追求的效率最终应该能发展全球经济。
但他也承认,目前 Web 上大多数的裸数据流的经济价值有限:分析师手上掌握的,对特定行业有着深刻理解的专业数据有用得多。他认为现在对实时处理超大数据集能力的宣传有些言过其实。
有的经济学家认为,新技术的真正价值往往是很难评估的,大数据也许早已给经济带来好处了,只是没有算进官方的经济数据里。比方说,Hulu 上面的小猫视频和电视节目给网上冲浪者制造了欢乐,那么经济学家是不是应该想办法给此类无形活动评估一下价值啊?此类活动是不是推动了 GDP 的增长?
此外基础设施投资往往要花费数年才能回收。西北大学的经济学家 Shane Greenstein 说,1990年 的铺设高速互联网的投资也是在最近才开始获利。但是他也指出,相对于第一波浪潮对经济活动的影响,大数据革命带来的影响更难看清。这种影响有可能只是有延迟,也可能没有价值。
但是数字未来学家喜欢拿电网的崛起与之对比。其想法是无所不在的互联网让数据和 “云” 无所不在,就像插座让电无所不在一样。
数字的对比是诱人的。Harold L. Platt 在《The Electric City》一书中描述的 19 世纪末 20 世纪初芝加哥电力飙涨的情况令人马上联想到今天数据的增长。
但已经 68 岁的 Platt 并不同意这种简单的类比。他说电力给制造、家庭生活、交通、上层和底层社会带来的革命数据时代未必就能做到。
不过,在芝加哥那头通过手机接收采访的 Platt 发现自己也无法回避这股数据洪流。正打着电话的他收到了自己已成年的孩子发过来的短信。“我得短信回复他们,否则他们就不会回我。所以我也得随大流。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09