京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何利用互联网大数据这桶万金油
互联网金融在中国的喷发式成长带动了个人信用征信的强大需求,新型征信市场体系的建立又带动了大数据产业的发展,在这条逻辑严密的互联网金融生态链条上,如何充分合规利用大数据成为扼颈之虞。
中国互联网金融行业协会的最新统计数据显示,2014年底中国的互联网金融规模已突破10万亿。而中国拥有40亿银行卡用户,其中仅4亿信用卡,4亿银行卡中,还有大约2亿为沉睡的僵尸卡,相对6亿智能手机用户,互联网金融的未来市场潜力依然十分巨大。
在日前由新浪财经及新浪战略合作部主办的“当大数据爱上金融”闭门沙龙上,我爱卡信用宝创始人兼CEO涂志云认为,如果从时间维度来衡量,中国互联网金融行业发展基本与美国同步,但金融信贷水平与美国相差20十年,飞步向前的行业和征信体系的滞缓,很有可能成为互联网金融产业发展路上的一个大坑。
产业界的一个长期主流观点认为,互联网大数据是绕开征信体系监管和政策门槛的一桶万金油,来自用户非结构性行为的互联网大数据可以对用户静态特征和动态特征的描述和预测,不同数据的跨界碰撞和融合拼接。是互联网金融征信体系的一桶万金油。
随着互联网拥有海量的大数据信息以及云计算等数据处理技术的不断进步,可以提供互联网金融征信产品的机构已不仅仅限于传统的专业征信中心或征信公司,在强大的市场需求刺激下,一批专门针对P2P网贷、网络微贷的互联网金融专业征信机构或“准征信机构”开始出现并迅速发展。
但这可以帮助中国征信体系快速超越20年差距,赶上互联网金融产业的步伐吗?
互联网金融的本质仍然是金融,必须按照金融的发展规律运行。五道口金融学院金融大数据研究室总监杨威认为,大数据并不局限于互联网数据,仅凭互联网数据,并不能解决所有问题,需要避免互联网数据万能论,用传统结合创新,从数据走向业务,或是一条可行的道路。
例如,涂志云曾参与全球的五家国家级别的征信机构开发基础上国家标准的个人信用评分模型的建立。他认为,中国现有的信用评分是个人行为的概括,真正的信用评分不是一个对过去的总结和概括,而是对未来信用行为和违约行为的一个预测。所以,无论是央行还是民营征信公司,都可以利用互联网大数据建立一套可落地参考的征信体系:所有的分数给一个对应的违约率或坏账率。
但现实情况是,目前没有一个中国机构具备这个能力。据了解,央行正在开发类似这样的评分体系,现在为止还没有正式推向市场。
这恰恰是民营互联网征信公司的机会,也是挑战所在。
互联网征信公司百融金服副总裁冯宗欣认为,民营机构在互联网金融征信市场的机会很大。人民银行征信中心有3亿人的信用记录,占中国总人口的25%,仍有75%的人没有有效的信用记录,这将导致大多数人的融资需求很难得到满足。
这家公司从六年前成立开始,探索金融大数据结构的脚步从互联网逐步延伸到了金融机构、来自于线下零售,包括社交,包括媒体,包括航空、教育、运营商、品牌商等多个维度。
“单维度的数据叫数据,不叫大数据。”冯宗欣强调。和其他征信机构的步伐一致,百服金融的征信业务步伐正在向欺诈评分、催收评分等领域拓展。
这显然是大势所趋。优势在于融合线上线下、结构性和非结构性、过去和未来等多维度的数据,形成一个动态的大数据分析库。挑战在于包括央行和银行金融体系亦在银行传统之外,研究来自传感器、媒体、其他行业数据的结合,这个市场跑马圈地之势刚刚开始,谁能最后留下取决于多方面因素。
互联网金融热潮之下,中国强大的市场需求和落后的征信体系形成巨大反差反差,但这也成就了中国互联网金融创业者利用科技、利用大数据在征信领域里面做一次真正的创新和变革的巨大机会,逼迫中国在未来10年的时间走完美国过去30年的路。
互联网重构了金融,大数据重塑了信用。但这条路依然很长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11