京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1进程和线程的概念
1.1什么是进程
一个进程就是在一个运行的程序,它有自己独立的内存空间,一组系统资源,每个进程的内部数据和状态都是独立的,例如在window是同时打开多个记事本,虽然它们所运行的程序代码都是一样的,但是所使用的内存空间是独立的,互不干扰.
1.2什么是线程
线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制;但与进程不同的是,同类的多个线程共享一块内存空间和一组系统资源,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈
1.3进程与线程的区别
1. 进程:每个进程都有独立的代码和数据空间(进程上下文) ,进程切换的开销大.
2. 线程:轻量的进程,同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换的开销小.
3. 多进程:在操作系统中,能同时运行多个任务程序.
4. 多线程:在同一应用程序中,有多个顺序流同时执行.
1.4线程创建的两种方式
采用继承Thread类创建线程
该方法比较简单,主要是通过继承java.lang.Thread类,并覆盖Thread类的run()方法来完成线成的创建.Thread 类是一个具体的类,即不是抽象类,该类封装了线程的行为.要创建一个线程,程序员必须创建一个从 Thread 类导出的新类.Thread类中有两个最重要的函数run()和start().
通过实现Runnable接口创建线程
该方法通过生成实现java.lang.Runnable接口的类.该接口只定义了一个方法run(),所以必须在新类中实现它.但是 Runnable 接口并没有任何对线程的支持,我们还必须创建 Thread 类的实例,这一点通过 Thread 类的构造函数
public Thread(Runnable target);来实现.
2 单线程和多线程性能比较
以使用蒙特卡罗概率算法求π为例,进行单线程和多线程时间比较
2.1什么是蒙特卡罗概率算法
蒙特卡罗法(Monte Carlo method)是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解,故又称统计模拟法或统计试验法. --百度百科
蒙特卡罗求算法求π
第一步
画正方形和内切圆
第二步
变换表达式
正方形面积As=(2R)^2
圆的面积Ac=πR^2
Ac/As=(2R)^2/πR^2
π=4As/Ac
令P=As/Sc,则π=4P
第三步
重复N次实验求平均值
在正方形区域内随机生成一个点A,若A落在圆区域内,M++
P=M/N
π=4P,N的取值越大,π的值越精确
2.2 java代码实现算法
N取值为10000万,多线程的数为100,每个线程执行100万次模拟实验
线程实现
import java.util.concurrent.CountDownLatch;
public class ProModel implements Runnable {
public int N;//随机实验的总次数
public static int M;//随机点落在圆中的次数
private int id;
private final CountDownLatch doneSignal;
OBJ semaphore;
public ProModel(int id,CountDownLatch doneSignal,int N,OBJ semaphore2){
this.id=id;
this.doneSignal=doneSignal;
this.N=N;
this.semaphore=semaphore2;
M=0;
}
public void run(){
int tempM=0;
for(int i=0;i
if(isInCircle()){
tempM++;
}
}
synchronized (semaphore) {
add(tempM);
}
doneSignal.countDown();//使end状态减1
}
public void add(int tempM){
System.out.println(Thread.currentThread().getName());
M=M+tempM;
System.out.println(M);
}
//随机产生一个在正方形区域的点,判断它是否在圆中
public boolean isInCircle(){
double x=Math.random();
double y=Math.random();
if((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5)<0.25)
return true;
else
return false;
}
public static int getTotal(){
return M;
}
}
多线程Main实现
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class MutliThread {
public static void main(String[] args) throws InterruptedException {
long begin=System.currentTimeMillis();
int threadSize=100;
int N=1000000;
OBJ semaphore = new OBJ();
CountDownLatch doneSignal = new CountDownLatch(threadSize);
ProModel[] pros=new ProModel[threadSize];
//设置特定的线程池,大小为threadSizde
System.out.println(“begins!”);
ExecutorService exe = Executors.newFixedThreadPool(threadSize);
for(int i=0;i
exe.execute(new ProModel(i+1,doneSignal,N,semaphore));
try{
doneSignal.await(); //等待end状态变为0, }catch (InterruptedException e) {
// TODO: handle exception35
e.printStackTrace();
}finally{
System.out.println(“ends!”);
System.out.println(4*(float)ProModel.getTotal()/(float)(threadSize*N));
}
exe.shutdown();
long end=System.currentTimeMillis();
System.out.println(“used time(ms):”+(end-begin));
}
}
class OBJ{}
单线程Main实现
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SingleThread {
public static void main(String[] args) {
long begin=System.currentTimeMillis();
int threadSize=1;
int N=100000000;
OBJ semaphore = new OBJ();
CountDownLatch doneSignal = new CountDownLatch(threadSize);
ProModel[] pros=new ProModel[threadSize];
//设置特定的线程池,大小为5
System.out.println(“begins!”);
ExecutorService exe = Executors.newFixedThreadPool(threadSize);
for(int i=0;i
exe.execute(new ProModel(i+1,doneSignal,N,semaphore));
try{
doneSignal.await(); //等待end状态变为0, }catch (InterruptedException e) {
// TODO: handle exception35
e.printStackTrace();
}finally{
System.out.println(“ends!”);
System.out.println(4*(float)ProModel.getTotal()/(float)(threadSize*N));
}
exe.shutdown();
long end=System.currentTimeMillis();
System.out.println(“used time(ms):”+(end-begin));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30