京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据思维对P2P领域的启发作用
当今的时代被称为大数据时代,网民和消费者的界限正在消弭,企业的疆界变得模糊,数据成为核心的资产,并将深刻影响企业的业务模式,甚至重构其文化和组织结构。因此,大数据对国家治理模式、对企业的决策、组织和业务流程、个人生活方式都将产生巨大的影响。如果不能利用大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判,所有传统公司都只能沦为新型用户平台级公司的附庸,其衰落不是管理能扭转的。
数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。下面说说B2C和C2C中的大数据应用对P2P大数据领域的启发作用以及P2P该如何借助大数据技术实现产业腾飞。
大数据在C2C和B2C中应用的典型事例——淘宝和淘宝商城
淘宝网为其主打的C2C和B2C两大商业模式引进了大数据技术,通过设计的三大工具来让每一位客户了解其中、感受其中和收益其中。
一、淘宝指数
淘宝指数是淘宝官方推广的免费工具,对于不想花钱而想享受大数据的小资本商家有很大的帮助,通过此工具可以分析商品的市场走向,研究消费者的年龄、地域、消费层级、星座爱好等数据信息,从而为商家进行精准的受众合理化分析。
二、流量解析
流量解析是淘宝的数据洞悉类产品,通过记录一段历史时期内关键词或类目在淘宝的各类市场数据,帮助商家洞悉市场趋势变化情况,从而更好的设置关键词的选择策略和竞价策略,以求花最少的钱办最大的事儿。
三、数据魔方
数据魔方是淘宝出品的一款收费类数据产品。主要提供行业数据分析、店铺数据分析,为商家在推广方面提供助力。商家可以根据数据魔方查询的数据维度去衡量每个关键词的行业竞争度如何,然后选择竞争度好的关键词用于推广。筛选的关键词在符合自己产品属性的前提下,然后在各个维度下选择推广费用在预期之下的关键词,竞争度和订单竞争度分别按序排列,从而筛选竞争度强的关键词。
大数据时代最大的转变就是——放弃对因果关系的渴求,追求相关关系的融合。
P2P该如何借助大数据技术实现产业腾飞
通过大数据在其它领域的应用,P2P从中学习到了许多经验,通过实践,重点解决了领域内的三个问题:第一是解决运营交易成本过高的问题。网银降低了20万个网点成本。第二是解决资产与负债流动性不匹配的问题。P2P的核心价值就是体现资产证券化,能够自由转让,流动性自然就会进入一个良性循环。第三是拓展了四千万中小微企业市场。互联网金融出现以后,更大的变化是把市场体量做大了,不是只服务于我们现有的客户,还可以把碎片化的需求和供给进行整合,进而细化渗透到很多中小企业市场和中小客户市场。
在传统的借贷流程中,对于借款人的信息审核,机构是依靠借款人自己提供的各类信息来判定其还款能力。但此种审核方式有四大问题:其一,用传统信息获取渠道判断信息真伪的成本较高;其二,由于全程需要人工参与,既增加了道德风险,又导致效率极其低下;其三,传统的风险评估模型中,对于借款人资产状况评估的权重过高;其四,贷款人隐藏风险的难度较低,造假成本较低。
如果我们用大数据的角度来构思,就可以发现应该把更多权重放在借款人日常生活的交易数据及社交数据上,比如借款人一般都在哪里消费、月均消费金额是多少、消费支出中的分布情况如何、微博微信之类的社交圈活跃度如何等诸如此类的问题。
这类数据具有很好的连贯性,我们可以从中分析很多的用户特性和习惯轨迹并反向推断借款人的实际财务状况,进行风险筛选;也能大幅增加借款人的违约成本从而警示借款人遵守规则、按期还款。最重要的是,这些数据造假可能性非常低,因为都是大数据环境下的各类碎片信息收集和分析,真实性基本可以做到百分之百。
拥抱大数据目前存在两大主要问题。首先,数据全量在线。目前就国内来说,政府和银行体系掌握大量的基础数据,但太多系统都是孤立与封闭的,有无数信息孤岛等待联通,诸如政府管理的社保信息、不动产信息等。而银行掌握着最重要的资金交易数据,也基本是完全封闭的,并没有开放性的合作。
其次,一旦数据开放共享的基础设施完善后,用户的隐私保护将会是一个大问题。P2P网络借贷商业模式中,打破借贷双方信息不对称是非常主要的服务内容,参与交易的借贷双方信息透明度越高,越能促进交易的繁荣发展。
在此,我们期待更多权威信用信息分享,可以是官方的,也可以是民间的。大数据时代的到来正好为这一美好愿景提供了可能,数据的量化、公开化、透明化是P2P行业降低运营成本、提升企业安全、保证行业健康发展的基础所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03