京公网安备 11010802034615号
经营许可证编号:京B2-20210330
攻克大数据:数据科学家的八种技能
随着大数据渗透进各行各业,负责淘洗数据、从中精炼价值的数据科学家无疑是这几年最炙手可热的职位,《哈佛商业评论》将之誉为21 世纪最性感工作。
1,因为优异的数据科学家就像独角兽一样珍贵难寻,而且可不是只有科技公司在抢人,传统金融界、零售商、广告、教育,几乎所有产业都需要数据科学家从大量数据中萃取精华。根据去年七月 Indeed.com 的调查,美国数据科学家每年均薪 12.3 万美金。
2,比起整体均薪多出 113%——当然,还是比每年平均可以领 74 万美金的 CEO 还少,但也够让 99.99% 的上班族望尘莫及。
能领这么惊人的薪资,数据科学家的本领真的不是三言两语就能讲完。但是到底什么是数据科学家?
顶尖的数据科学家最好统计、数学、程式能力最好都要掌握,而且要能从中洞察意义,并且拥有非凡的直觉,用数据数据发声,帮助公司制定重大决策。但是,其实就算同样都是寻找「数据科学家」,Google 跟沃尔玛超市要的人才,可能非常不一样。别因你好像缺了哪个专长而打退堂鼓,如果仔细阅读每家公司张贴的职缺叙述,你会发现说不定现有的技能就能进入数据科学的殿堂。Airbnb 数据科学家 Dave Holtz 把市场上所需的数据科学家概括成以下四类:
四种数据科学家
菜鸟数据科学家说穿了就是数据分析师
有些公司需要的数据科学家,说白话就是数据分析师(data analyst),而数据分析师就是菜鸟数据科学家。你的工作包括从 MySQL 萃取数据或是一名 Excel 专家,也许要能绘制基础的数据视觉图表、分析 A/B 测试的结果或者管理公司的 Google Analytics 帐号。这种公司对抱负远大的数据科学家来说,是很不错的练功场所,当你变成老手了,也能开始尝试新事物,扩充技能组合。
来清理我们乱糟糟的数据!
公司发展到了一定规模之後,累积一堆尚未理清的数据,而且持续大幅增加,因此他们会需要一个能够建立数据基本设施(data infrastrucure)的人,以让他们在这个基础上继续成长。由於你是第一个或第一批获聘的数据相关人员,工作通常不会太难,不求统计学家或机器学习专家才能胜任。在这种公司里面,带有软体工程背景的数据科学家就很吃香了,重点任务是提供数据到 production code,关於数据的洞见与分析倒是其次。就像前面说的,你是这家公司的第一个数据探勘者,通常你不会获得太多上层的支援,虽然反而更有机会大放异彩,不过因为比较缺乏真正的挑战,也有可能面临停滞不前的窘境。
我们就是数据,数据就是我们
也有很多公司,主要的产品就是数据(或数据分析平台)。如果你想进入这种公司,那你势必要具备很高深的数据分析或机器学习功力。完美的人选应该是有正规的数学、统计、物理背景,而且有意继续朝学术面钻研。这些数据科学家的主要职责在於研发出色的数据产品,而非解答公司的营运问题。拥有大量消费者数据也以此作为主要营利来源的公司、或者提供基於数据的服务的公司,都归属此类。
产品并非数据、却以数据驱动产品的公司
很多公司都属这种类型。你可能会加入一组已经建立的数据科学家团队,这家公司很重视数据,但称不上一家数据公司。你既要能够进行数据分析、接触 production code、也能将数据视觉化。一般来说,这种公司要的人才要不是通才,就是他们团队缺乏的某种特殊专才,比如数据视觉化或机器学习。想要通过这类公司的考验,端看你对「大数据(比如 Hive 或 Pig)」工具的熟稔程度,以及过往处理杂乱无章数据的经验。
现在,你了解“数据科学家”的定义很浮动,即使公司开缺都以数据科学家为名,但是他们要找的人其实不太一样,不一样的技能组合、不一样专长、不一样的经验层级,却都能够称之数据科学家,因此找工作时,务必详读职位描述,搞清楚你会进入什么样的团队、发展什么样的技能。
基本工具
无论哪一类公司,统计程式语言如 R 或 Python,以及数据库查询工具像 SQL 大概都是数据科学家必备的常识。
基础统计学
对统计起码要有基本认识,才称得上及格的数据科学家,一名拥有许多面试经验的人资说,很多他曾面试的人连 p-value 的定义都讲得不清不楚。你应该熟悉统计测试、分布、最大似然法则(maximum likelihood estimators)等等。机器学习也很重要,但更关键的能力,是你能否判断不同状况该用什么不同的技术。统计学适用於所有类型的公司,但对那些主要产品并非数据、却大幅依赖数据的公司来说尤为必备能力,老板需要的是你能不能利用数据帮助他们进行决策,以及设计、评估实验与结果。
假如你是在握有大量数据的大型企业,或是产品本身就是以数据为卖点的公司工作,机器学习就是你用来吃饭的家伙。虽然 KNN 演算法(k-nearest neighbors)、随机森林(random forest)、集成学习(ensemble methods)这类机器学习的流行术语好像不懂不行,不过因为事实上很多技术都可以用 R、Python 程式库解决,所以即使你不是演算法的世界顶尖专家,并不代表就毫无希望。比较重要的是,能够纵观全局,每种状况出现都能找出最契合的技术。
多变量微积分、线性代数
就算你即将面试的公司并未要求机器学习或统计学知识,基础多变量微积分与线性代数问题十之八九都是逃避不了的必考题,因为数据科学就是由这些技术型塑而成。尽管很多事情可以交给 sklearn 或 R 自动执行,但是未来如果公司想要建立自有的方案,这些基本知识就变得很重要了。如果你置身於「数据就是产品」,或者预测绩效仅因小小进步或演算法优化就能带来惊人效益的公司里面,微积分、线性代数等数学概念都需了解通透。
清理数据
Data Munging 是最容易令人不耐的过程,你面对的是乱七八糟的数据。这些数据包含消失的数值、不一致的字串格式(比如「New York」与「new york」与「ny」)、数据格式(「2015-03-26」、「03/26/2015」,「unix time」、「timestamps」等等),必须劳心费神梳理这些庞杂的数据。虽然这工作吃力不讨好,但只要是数据科学家,大概都避免不了,而如果你是某家小公司的先遣数据科学家,或是在一家产品非与数据相关,但是数据却扮演重要角色的公司里工作,清理数据的任务格外重要。
数据视觉化与沟通
把枯燥繁琐的数据转成图像,以及向外界沟通的技能愈来愈重要,尤其是在年轻的公司制定由数据驱动的决策,或者协助其他组织进行数据决策的公司。「沟通」二字的真谛在於,面对技术人或一般人,你都能准确的传达研究发现,并能让他们轻易理解。至於视觉化,如果可以熟悉 ggplot、d3.js 等软体的运用,会有很大的助益,当然工具只是表象,能否参透数据视觉化的原则,才是最需费心的地方。
软件工程
如果你是公司数据科学团队的草创元老,拥有强悍的软体工程背景十分重要,你会负责处理很多数据登录(data logging),也有可能需要参与开发以数据为本的产品。
像个数据科学家般思考
所谓数据科学家,就是你解决问题的方法奠基於数据数据。在面试过程中,主考官可能会出一些比较艰涩的问题,比如公司想要执行的某个测试,或者计划开发的数据产品。判断事情的轻重缓急、作为数据科学家如何与工程师和产品经理互动、知道该用什么方式解决问题,都是你该培养的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16