
七家利用大数据博弈的初创公司
大数据业务有着非常光明的未来,2015年第一季度的1020笔交易创造了134亿美元的融资,成为继2000年以来的大数据融资之最。
想知道是谁引领了这股借贷狂潮吗?以下是利用大数据做业务的七家初创公司。一些公司自身利用大数据进行创新,还有一些公司的工作就是致力于使他人可获得大数据。不管是哪种,你都应该看看这些“游戏玩家”是如何利用大数据的。
1. Uber
现在很多人都听说过租车初创公司Uber,如今它已经风靡很多大型城市。但是有一点你可能不知道,那就是Uber以其在大数据方面的出色运用来达到优化、现代化、合理化业务运营的目的。
通过数据分析,Uber能够预测出客户的目的地,能够更有效地分配司机。而另一个有趣的例子就是:公司利用最近分析显示的数据来使得司机待在同一个地方就能收益最大化,甚至不需要开着车转来转去寻找潜在客户。
最后,Uber还利用数据来实施动态的高峰期定价,鼓励司机在出行用车需求高的时候多工作。
2. Foursquare
最近Foursquare重新宣布他们将使用数据挖掘技术来介绍一些用户喜欢的餐厅、景点或者购物中心。公司运用了社交网络分析之后不仅能够分析个体用户的喜好,还能知道他们何时与何人在一起。
所以,公司就能够为用户进行推荐以期望引导潮流。再加上其他的一些机器学习技术,Foursquare能够为消费者做出一些相关的建议,引导他们参与到当地的商业中去。
3. Zapier
近来,要使App之间相互交流已成为一个网上业务的主要挑战,但是Zapier就很好地解决了这个问题。它通过一个基于其他App上的触发器使用户创建Zaps。想要在Slack里收到你的Google邮件吗?想要从Evernote里将事件记录到Google邮件里吗?这些Zapier的zap都可以帮你解决。
Zapier通过使用用户的定性数据来决定下一个加入到系统之中的App,使其在满足用户更新方面的需求有求必应。
4. Feedzai
信用卡诈骗是一个非常严重的问题,随着移动支付越来越流行,这个问题只会越来越严重。Feedzai就是一家利用大数据来监测以及实时阻止诈骗的公司。
公司将机器学习技术和行为分析相结合,而不是单纯地使用基于规则的标准化诈骗监测。这种大数据的挖掘和使用就可以创造出一款新的追踪分析消费者购买行为的软件。这样的话当事态出现异常时,Feedzai就可以进行监测并且立刻发出警告。
5. Spotify
起初,提供音乐流媒体服务的Spotify可以让你以固定的订阅费听音乐,按照你自己的需求播放,并且还没有广告。Spotify依赖用量算法来将用户与其喜爱的音乐相连接。但是不幸的是,结果并不像公司预想的那样对用户有很大的帮助。
2014年初,公司收购了初创公司Echo Nest,这家公司主要是开发音乐选择的人工智能。新的人工智能取决于50多个因素,再加上用户选择的大量数据,能够提供非常有用的建议。最近,Spotify利用大数据来试图囊括更多的方面,比如说Facebook动态更新和天气通知。
6. PlaceIQ
虽然说从消费者的角度来看是有点奇怪,PlaceIQ是市场营销人员的一个梦想。网站浏览器上的cookies可以使市场营销人员理解消费者网上的行为踪迹,同样地,PlaceIQ使用地理位置追踪数据来告诉公司现实生活中消费者所在的地点。PlaceIQ还与人口数据相结合来帮助市场营销人员理解人们对于广告以及其他一些因素的反应,使其最大化媒体购买和其他活动支出。
7. Beyond Sports
Beyond Sports是一家荷兰公司,它的虚拟现实模拟器可以在现实世界比赛数据的基础之上创造足球训练项目。这项可获得数据的创新性利用可以使运动员在训练时,除了以他自己的表现作为参照,还可以以他想模仿的著名明星运动员的表现作为参照。当下,公司正在打算将这个技术应用到足球、自行车、曲棍球和冰球,这就意味着光看电影录像来学习比赛即将成为过去。
在接下来的几年当中,那些能够有效利用大数据的初创公司就会盈利。通过使用诸如 import.io、Google Analytics和Mixpanel等工具,公司企业可以处理数据以取得竞争性的利益。一旦错失那些可获得的数据分析以及多种类型检测的洞察力,这些都将会成为企业所不能承受的错误。
这些初创公司都在运用大数据进行博弈。我们可以学习它们的数据科学应用来获取更大的企业利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22