
大数据驱动决胜营销未来
大数据与网络营销珠联璧合,新型数字营销模式,区别于传统互联网营销以媒体为导向的形式,而是以挖掘用户的真实需求为导向进行广告投放。AdTime副总裁李麒在第七届广告主峰会上分享了其在大数据营销方面的经验。
网络广告仍然让企业头疼
2014年,网络广告市场已经突破1500亿元的大关——网络广告炙手可热,广告形式百家齐放,这却带来了企业的选择难题。这些难题主要体现在以下方面:
媒体碎片化
首先,现在是一个媒介碎片化的时代——截至2013年中国网站450万,网页上千亿,庞大的互联网环境下超过6.31亿的受众分散在450万家网络媒体上,高成本投入往往会形成了广告浪费;低投入又恐杯水车薪无法有效覆盖。最终使得大部分中小企业面对互联网营销进退两难。
网民兴趣、行为时间、区域、媒体属性难以把控
其次,如果无法掌握网民兴趣、行为时间、区域、媒体属性等因素,互联网广告就很难做到精准投放。其中在以上因素里,受众区域化这一点,对于受众精确的细分和勾勒,以及广告投放具有非常重要的意义。
广告环境恶化
第三,广告环境恶化——网民常被无关广告信息干扰加剧,而通过我们精确的大数据分析,能做到让合适的广告在合适的时间通过合适的渠道推送给最需要他的人,准确的智能化的广告推送在不影响用户体验的基础上又能提升网民对品牌和产品的好感度。
回报问题
如今日益成熟的抽样调查面临艰难的选择,原有的抽样设计难免误差失控,扩大样本数量无疑可以控制误差,导致费用的不断增加。
在大数据时代下,我们可以通过广告调度来不断优化广告投放产出比,这在AdTime分为同站调度和跨站调度。同站调度的意义是可以在投放产品广告时,进行针对性圈定;而当受众进入网站内容页,此时用户匹配度最高,用户停留时间最长,然后再投放活动广告,对人群进行有效牵引。这是同站调度的概念。
对于跨站调度,比如品牌在网站首页举行互动活动时,用户没有注册参加而转跳到其它网站时,我们可以更换产品诉求,进行追踪投放;而当用户进行注册之后,转跳到其它网站时,我们对受众进行新品推送,提升ROI。让每一次投放在最大程度上收获到最多的转化率。
大数据让网络广告活起来
面对这些难题,我们更需要的是一种更灵活的形式。
用户行为成就——智能管道
互联网有传统媒体所没有的优势。每个人在网上都会留下痕迹,系统通过收集分析用户的互联网足迹,浏览的网页内容,就能找到用户的兴趣关注点,对用户进行细分管理。当用户再上网时,就可以根据用户的喜好,系统自动推送匹配的、相关度高的广告了。
电子商务的崛起让网络广告走向效果时代
随着电子商务产业的崛起,AdTime有了更多展示的机会。电商客户对广告效果的要求很直接,谁能够提高点击率,谁能够带来更大的ROI;而门户网站如今也开始重视人群的细分和定向,也逐渐放弃按天售卖广告位的销售模式,更多的尝试针对不同目标人群的需要,去推送更相关的广告内容,这就给了我们更多的机会,可以帮助门户网站对广告位进行优化。
大数据正改变营销模式
以今天最受关注的O2O为例,但O2O必须形成一个完美的闭环才能拥有足够大的未来预期,线上与线下的打通其实最难的一步便是用户层面的数据统一。这里面存在四个环节:1、如何通过大数据判定,向网站导入精准有价值的流量;2、再如何将价值用户引导至线下商户,并完成消费;3、线下商户又如何把消费数据记录并提交至线上进行分析,沉淀出有效数据对用户特征进行判定。4、从线上对不同特征的用户群体进行针对性个性化的服务,最终再次引入线下商户进行消费。
这是一个复杂的闭环,其中对数据的提炼和处理是最为重要的一个环节。大数据的出现将会是一个全新的局面,地面的数据也将归并到大数据的研究范畴,同时与互联网的数据进行统一打通,这将快速的建立起全新的营销格局。
对于互联网而言,未来的数字营销都将是基于大数据,所有的营销行为都将是以价值最大化为前提。在全媒体的覆盖下,广告将实现最佳效果转化。AdTime将进一步利用自身技术的先进性、分析视角的独特性以及信息数据的全面性,确保自身全营销数字平台的持续领先。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04