京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据还能告诉我们什么
世界的一切关系都能用数据来表征。早在古希腊的哲学家毕达哥拉斯就提出了“数是万物的本原”的思想。如今,大数据技术正在重塑我们这个世界,拥抱大数据已成为席卷全球的大行动。
美国的《大数据研究和发展计划》,欧盟的《数据价值链战略计划》,英国的《英国数据能力发展战略规划》,以及日本的《创建最尖端IT国家宣言》等都将大数据 研究和生产计划提高到国家战略层面。近日,我国也印发了《促进大数据发展行动纲要》,显示出我们决战大数据时代的信心和决心。
概括来讲,大数据有以下四个特点:第一,数据体量巨大。可以称之为海量或天量;第二,数据类型繁多。涉及到人类生活方方面面所产生的数据源;第三,处理速度快。瞬间可从各类数据中快速获得高价值的信息;第四,数据动态变化。不断有新数据增加,采用合理的数据模型和分析处理方法,将会带来很高的经济和社会效 益。
大数据与云计算密不可分。大数据技术的战略意义不在于掌握庞大的数据信息,而在于掌握对这些含有意义的数据进行专业化处理的技术。大数据需要结合新的处理模式才能产生具有更强的决策力、流程优化能力等多样化的信息资产,即通过对海量数据的加工,快速获得有价值的信息,为管理决策 和生产生活服务。
大数据已成为国家竞争力的一部分。在国家治理层面,大数据可以实现科学决策,推动政府管理理念和社会治理模式进步,逐步实现政府治理能力现代化;在经济发展层面,大数据可以深刻影响社会分工协作的组织模式,促进生产组织方式的集约和创新。
另外,大数据在国家安全层面也将发挥巨大的作用。在外交、国防、军事和反恐等方面,发掘和释放数据资源的潜在价值,能有效解决情报、监视和侦察系统不足等问 题,可以更好地维护国家安全,有效提升国家竞争力,增强国家安全保障能力。当然,大数据如果防范和保护措施不得力,也会让敌对势力利用,成为国家安全的潜 在风险。
我国有庞大的人口和应用市场,复杂度高、变化多端,使得我国成为世界上最复杂的大数据国家。大数据的应用和影响,不仅体现在国家和社会发展的宏观方面,也将体现在我们日常生活的诸多细微之处。
前不久,伦敦帝国理工学院数据科学研究所向彭丽媛女士赠送了一件苏格兰羊绒披肩,其尺寸来自于大数据分析。该研究所采用彭丽媛公开照片,通过计算机图像分析技术,计算出了彭丽媛的衣服尺寸而制成。相信在不久的将来,大数据的个性化服务将不再是个例,至少会在以下几个方面普遍服务于每个人的成长和生活。
一是日常生活大数据。无论衣食住行,还是理财购物,未来大数据技术都会给我们的日常消费莫大的便利和帮助。当我们的日常行为习惯,以数据方式记录和积累后, 大数据分析会告诉我们,我该穿什么样的衣物最合身,我该坐什么交通工具最便捷,我该如何理财才能做到高回报低风险,我该怎样购物才能获得最佳性价比。借助 大数据技术,营销机构能为特定消费者提供针对性服务,生产企业也能够针对特定消费者提供更多的定制化产品。
二是生命健康大数据。人体每时每刻的体温、心率、血压、血相等生理数据,是一类非常值得分析的大数据。随着“可穿戴设备”技术的不断发展,将来会有越来越丰富的健康监测终端实时 收集人体生理数据,自动传入云端,进行数据分析与处理,再将其结果发给医生。医生将根据大数据的处理结果给出诊断或康复建议。利用大数据和医疗定量分析技 术,未来越来越多的普通百姓可以接受远程健康监督、营养指导、慢性病管理以及康复治疗等服务。
三是智慧学习大数据。当学习过程能够 跟踪,知识体系可以解构,文化水平可以量化时,文化教育类大数据无疑会成为值得挖掘的金矿之一。丰富的学习终端,将会更多地融入文化资源云平台,根据每个 人的兴趣爱好、知识结构和发展进程,大数据能及时提醒我们改进学习方法,能推送需要的知识单元,还可以提供适宜的文化资源。借助大数据,我们将能接受量体裁衣的终身学习,也能享受到丰富多彩的精神生活。
拥抱大数据,共赢新时代。“个人智库”“随身智库”终将梦想成真,信息技术的发展会给我们带来更美好的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11