京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:支撑餐饮团购O2O的第三种模式
大数据:支撑餐饮团购的第三种模式
目前,餐饮团购主要包括美团、大众点评、百度糯米,但三者的内在驱动力却有所不同。
美团是典型的交易驱动模式,业务比较单一,利润主要来自于团购业务的交易佣金。由于起始阶段缺少其他业务带来的用户基础积累,美团正是通过自身强大的运营能力,获得竞争优势,从而占据团购行业的半壁江山,这既是美团的优势,也同样是美团的劣势,毕竟运营能力是可以被复制的。
大众点评是典型的信息驱动模式,依托其前期商家点评信息的积累,大众点评拓展了团购业务,且已经成为大众点评的主要利润来源。大众点评在点评信息方面的领先优势,一方面为其积累了商家资源,另一方面积累了用户群,从而为其团购业务的开展奠定了基础,但是点评的业务集中于一二线城市,这造成了其团购业务在运营能力上与美团的较大差距。
糯米网在百度收购后得到了资金和流量的支持,稳固了其在团购市场的位置。同时,百度借助自身的技术力量,为糯米开拓新的数据驱动模式。这次517吃货节可以看做是对这一模式的“大练兵”。
所谓数据驱动,就是依托百度对搜索数据、地理位置、用户浏览数据的综合分析,提炼出针对特定对象的有效数据,并以此辅助相关产品的运营和推广。在与餐饮O2O的业务结合中,百度想到从海量数据中找出某地用户,最喜欢的小吃,以及这些小吃在哪些餐馆做得最好,然后才是邀请这些餐馆参加百度糯米团。通过数据分析,找到大多数人的喜好,以此吸引更多用户参与,这是数据驱动模式的简单逻辑。
数据分析:简单背后的复杂过程
这个简单逻辑背后蕴藏的是复杂的数据运算,我们看到的结果是一个个美食餐馆top10榜单,但支撑这些简单结论的是庞杂的数据和复杂的运算。
比如要找出上海最会做剁椒鱼头的十家饭馆,要最终确定关键词“剁椒鱼头”的搜索目标是找到上海的餐馆,第一步要剔除搜索“剁椒鱼头”只是为了找到这道菜的做法,或者是了解这道菜的具体常识的其他需求;第二步是要确定搜索目标在上海;第三步是与具体制作剁椒鱼头,且活动用户好评的餐馆匹配起来;第四步是通过数据量排序,找出餐馆的顺序。
据了解,为了保证榜单的准确性,百度糯米还邀请了各地烹饪协会的专家参与评价,并最终确定榜单。这有效的避免了仅仅依靠大数据分析可能导致的偏差,毕竟机器跑出来的数据,可能有机械分析的局限性,难免遗漏那些“酒香不怕巷子深”的老店。
据百度内部人士介绍,这些更有意义的数据,不是来自高频词,而是从百度搜索中的“长尾词汇”挖掘分析得来。他们不像单一词汇那样容易成为高频搜索词,每天有几十上百万,甚至过千万的搜索量。他们是几个词,或者词组甚至是一个完整的句子,每天只有几千上万的搜索,但是却更具体也更有价值。
大数据分析的复杂主要是如何让网络更有智慧,让机器组成的神经网络能深度学习人的思维,总结出人群中的规律。为了提升这一能力,百度正在开展“百度大脑”项目,目前它具备了两三岁孩子的智力。但是百度相信:随着计算成本的飞速下降和计算能力的飞速提升,未来十几二十年,这样的大脑或许比人脑还要聪明。
显然,对于“剁椒鱼头做法”、“剁椒鱼头北京”、“剁椒鱼头哪里好吃”,这几个搜索用词所蕴含的目的和意义是不同的,通过对其数据相关性的存储和分析,可以让“百度大脑”学习到更多内容。在未来的某一天,它又会告诉我们更多我们想知道的东西,而这种结果的输出,无疑会越来越精确,且更有价值。
大数据格局:为你做决策
百度糯米通过517让我们体会到了百度大数据的威力——吃什么上哪吃,我来帮你做决策,你所需要的就是掏腰包。
百度的目标是要打造一个弱化人脑的智能数据平台,让数据分析帮助人来决策。这与百度做搜索引擎的出身有关。而且,搜索引擎是用户主动行为,通过收集用户主动需求的数据,百度可以知道用户想要什么,通过数据分析,百度就能够知道用户喜欢什么。久而久之,百度就可以参照众人的决策过程,去帮助有需求的用户进行决策或者是推荐用户喜欢的内容。
同样,阿里和腾讯也在做大数据方面的开发。稍加分析我们就会发现他们各具优势,阿里的数据与百度类似,而且也更精细,比较明确的体现了用户的购物需求。因此,阿里在处理大数据方面需要的是数据整合能力,把合适的数据分配到所需的卖家或买家手中,对智能性的要求不高,却有极大的商业价值。
而腾讯的数据来源主要是社交网络,数据量大且信息点分散,要深入挖掘出其中的有用数据需要一个更强大、更智能化的“大脑”,因此,要使其发挥出与百度目前的相同的智能水平,其数据挖掘能力必须高过百度,因而难度较大。不过,腾讯可以在个别领域有所突破,比如对用户所需资讯的匹配上,可以做些工作。
综合来看,百度借助搜索引擎,可以实现数据广度与分析智能化要求两个维度的最佳卡位。可以在较短时间内实现数据分析的稳步智能化,在商业拓展上虽然不会有阿里那样直接,但却会给用户更多惊艳的感受,本次517吃货节,就可以算作一例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06