
大数据:支撑餐饮团购O2O的第三种模式
大数据:支撑餐饮团购的第三种模式
目前,餐饮团购主要包括美团、大众点评、百度糯米,但三者的内在驱动力却有所不同。
美团是典型的交易驱动模式,业务比较单一,利润主要来自于团购业务的交易佣金。由于起始阶段缺少其他业务带来的用户基础积累,美团正是通过自身强大的运营能力,获得竞争优势,从而占据团购行业的半壁江山,这既是美团的优势,也同样是美团的劣势,毕竟运营能力是可以被复制的。
大众点评是典型的信息驱动模式,依托其前期商家点评信息的积累,大众点评拓展了团购业务,且已经成为大众点评的主要利润来源。大众点评在点评信息方面的领先优势,一方面为其积累了商家资源,另一方面积累了用户群,从而为其团购业务的开展奠定了基础,但是点评的业务集中于一二线城市,这造成了其团购业务在运营能力上与美团的较大差距。
糯米网在百度收购后得到了资金和流量的支持,稳固了其在团购市场的位置。同时,百度借助自身的技术力量,为糯米开拓新的数据驱动模式。这次517吃货节可以看做是对这一模式的“大练兵”。
所谓数据驱动,就是依托百度对搜索数据、地理位置、用户浏览数据的综合分析,提炼出针对特定对象的有效数据,并以此辅助相关产品的运营和推广。在与餐饮O2O的业务结合中,百度想到从海量数据中找出某地用户,最喜欢的小吃,以及这些小吃在哪些餐馆做得最好,然后才是邀请这些餐馆参加百度糯米团。通过数据分析,找到大多数人的喜好,以此吸引更多用户参与,这是数据驱动模式的简单逻辑。
数据分析:简单背后的复杂过程
这个简单逻辑背后蕴藏的是复杂的数据运算,我们看到的结果是一个个美食餐馆top10榜单,但支撑这些简单结论的是庞杂的数据和复杂的运算。
比如要找出上海最会做剁椒鱼头的十家饭馆,要最终确定关键词“剁椒鱼头”的搜索目标是找到上海的餐馆,第一步要剔除搜索“剁椒鱼头”只是为了找到这道菜的做法,或者是了解这道菜的具体常识的其他需求;第二步是要确定搜索目标在上海;第三步是与具体制作剁椒鱼头,且活动用户好评的餐馆匹配起来;第四步是通过数据量排序,找出餐馆的顺序。
据了解,为了保证榜单的准确性,百度糯米还邀请了各地烹饪协会的专家参与评价,并最终确定榜单。这有效的避免了仅仅依靠大数据分析可能导致的偏差,毕竟机器跑出来的数据,可能有机械分析的局限性,难免遗漏那些“酒香不怕巷子深”的老店。
据百度内部人士介绍,这些更有意义的数据,不是来自高频词,而是从百度搜索中的“长尾词汇”挖掘分析得来。他们不像单一词汇那样容易成为高频搜索词,每天有几十上百万,甚至过千万的搜索量。他们是几个词,或者词组甚至是一个完整的句子,每天只有几千上万的搜索,但是却更具体也更有价值。
大数据分析的复杂主要是如何让网络更有智慧,让机器组成的神经网络能深度学习人的思维,总结出人群中的规律。为了提升这一能力,百度正在开展“百度大脑”项目,目前它具备了两三岁孩子的智力。但是百度相信:随着计算成本的飞速下降和计算能力的飞速提升,未来十几二十年,这样的大脑或许比人脑还要聪明。
显然,对于“剁椒鱼头做法”、“剁椒鱼头北京”、“剁椒鱼头哪里好吃”,这几个搜索用词所蕴含的目的和意义是不同的,通过对其数据相关性的存储和分析,可以让“百度大脑”学习到更多内容。在未来的某一天,它又会告诉我们更多我们想知道的东西,而这种结果的输出,无疑会越来越精确,且更有价值。
大数据格局:为你做决策
百度糯米通过517让我们体会到了百度大数据的威力——吃什么上哪吃,我来帮你做决策,你所需要的就是掏腰包。
百度的目标是要打造一个弱化人脑的智能数据平台,让数据分析帮助人来决策。这与百度做搜索引擎的出身有关。而且,搜索引擎是用户主动行为,通过收集用户主动需求的数据,百度可以知道用户想要什么,通过数据分析,百度就能够知道用户喜欢什么。久而久之,百度就可以参照众人的决策过程,去帮助有需求的用户进行决策或者是推荐用户喜欢的内容。
同样,阿里和腾讯也在做大数据方面的开发。稍加分析我们就会发现他们各具优势,阿里的数据与百度类似,而且也更精细,比较明确的体现了用户的购物需求。因此,阿里在处理大数据方面需要的是数据整合能力,把合适的数据分配到所需的卖家或买家手中,对智能性的要求不高,却有极大的商业价值。
而腾讯的数据来源主要是社交网络,数据量大且信息点分散,要深入挖掘出其中的有用数据需要一个更强大、更智能化的“大脑”,因此,要使其发挥出与百度目前的相同的智能水平,其数据挖掘能力必须高过百度,因而难度较大。不过,腾讯可以在个别领域有所突破,比如对用户所需资讯的匹配上,可以做些工作。
综合来看,百度借助搜索引擎,可以实现数据广度与分析智能化要求两个维度的最佳卡位。可以在较短时间内实现数据分析的稳步智能化,在商业拓展上虽然不会有阿里那样直接,但却会给用户更多惊艳的感受,本次517吃货节,就可以算作一例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23