
大数据:支撑餐饮团购O2O的第三种模式
大数据:支撑餐饮团购的第三种模式
目前,餐饮团购主要包括美团、大众点评、百度糯米,但三者的内在驱动力却有所不同。
美团是典型的交易驱动模式,业务比较单一,利润主要来自于团购业务的交易佣金。由于起始阶段缺少其他业务带来的用户基础积累,美团正是通过自身强大的运营能力,获得竞争优势,从而占据团购行业的半壁江山,这既是美团的优势,也同样是美团的劣势,毕竟运营能力是可以被复制的。
大众点评是典型的信息驱动模式,依托其前期商家点评信息的积累,大众点评拓展了团购业务,且已经成为大众点评的主要利润来源。大众点评在点评信息方面的领先优势,一方面为其积累了商家资源,另一方面积累了用户群,从而为其团购业务的开展奠定了基础,但是点评的业务集中于一二线城市,这造成了其团购业务在运营能力上与美团的较大差距。
糯米网在百度收购后得到了资金和流量的支持,稳固了其在团购市场的位置。同时,百度借助自身的技术力量,为糯米开拓新的数据驱动模式。这次517吃货节可以看做是对这一模式的“大练兵”。
所谓数据驱动,就是依托百度对搜索数据、地理位置、用户浏览数据的综合分析,提炼出针对特定对象的有效数据,并以此辅助相关产品的运营和推广。在与餐饮O2O的业务结合中,百度想到从海量数据中找出某地用户,最喜欢的小吃,以及这些小吃在哪些餐馆做得最好,然后才是邀请这些餐馆参加百度糯米团。通过数据分析,找到大多数人的喜好,以此吸引更多用户参与,这是数据驱动模式的简单逻辑。
数据分析:简单背后的复杂过程
这个简单逻辑背后蕴藏的是复杂的数据运算,我们看到的结果是一个个美食餐馆top10榜单,但支撑这些简单结论的是庞杂的数据和复杂的运算。
比如要找出上海最会做剁椒鱼头的十家饭馆,要最终确定关键词“剁椒鱼头”的搜索目标是找到上海的餐馆,第一步要剔除搜索“剁椒鱼头”只是为了找到这道菜的做法,或者是了解这道菜的具体常识的其他需求;第二步是要确定搜索目标在上海;第三步是与具体制作剁椒鱼头,且活动用户好评的餐馆匹配起来;第四步是通过数据量排序,找出餐馆的顺序。
据了解,为了保证榜单的准确性,百度糯米还邀请了各地烹饪协会的专家参与评价,并最终确定榜单。这有效的避免了仅仅依靠大数据分析可能导致的偏差,毕竟机器跑出来的数据,可能有机械分析的局限性,难免遗漏那些“酒香不怕巷子深”的老店。
据百度内部人士介绍,这些更有意义的数据,不是来自高频词,而是从百度搜索中的“长尾词汇”挖掘分析得来。他们不像单一词汇那样容易成为高频搜索词,每天有几十上百万,甚至过千万的搜索量。他们是几个词,或者词组甚至是一个完整的句子,每天只有几千上万的搜索,但是却更具体也更有价值。
大数据分析的复杂主要是如何让网络更有智慧,让机器组成的神经网络能深度学习人的思维,总结出人群中的规律。为了提升这一能力,百度正在开展“百度大脑”项目,目前它具备了两三岁孩子的智力。但是百度相信:随着计算成本的飞速下降和计算能力的飞速提升,未来十几二十年,这样的大脑或许比人脑还要聪明。
显然,对于“剁椒鱼头做法”、“剁椒鱼头北京”、“剁椒鱼头哪里好吃”,这几个搜索用词所蕴含的目的和意义是不同的,通过对其数据相关性的存储和分析,可以让“百度大脑”学习到更多内容。在未来的某一天,它又会告诉我们更多我们想知道的东西,而这种结果的输出,无疑会越来越精确,且更有价值。
大数据格局:为你做决策
百度糯米通过517让我们体会到了百度大数据的威力——吃什么上哪吃,我来帮你做决策,你所需要的就是掏腰包。
百度的目标是要打造一个弱化人脑的智能数据平台,让数据分析帮助人来决策。这与百度做搜索引擎的出身有关。而且,搜索引擎是用户主动行为,通过收集用户主动需求的数据,百度可以知道用户想要什么,通过数据分析,百度就能够知道用户喜欢什么。久而久之,百度就可以参照众人的决策过程,去帮助有需求的用户进行决策或者是推荐用户喜欢的内容。
同样,阿里和腾讯也在做大数据方面的开发。稍加分析我们就会发现他们各具优势,阿里的数据与百度类似,而且也更精细,比较明确的体现了用户的购物需求。因此,阿里在处理大数据方面需要的是数据整合能力,把合适的数据分配到所需的卖家或买家手中,对智能性的要求不高,却有极大的商业价值。
而腾讯的数据来源主要是社交网络,数据量大且信息点分散,要深入挖掘出其中的有用数据需要一个更强大、更智能化的“大脑”,因此,要使其发挥出与百度目前的相同的智能水平,其数据挖掘能力必须高过百度,因而难度较大。不过,腾讯可以在个别领域有所突破,比如对用户所需资讯的匹配上,可以做些工作。
综合来看,百度借助搜索引擎,可以实现数据广度与分析智能化要求两个维度的最佳卡位。可以在较短时间内实现数据分析的稳步智能化,在商业拓展上虽然不会有阿里那样直接,但却会给用户更多惊艳的感受,本次517吃货节,就可以算作一例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29