京公网安备 11010802034615号
经营许可证编号:京B2-20210330
另一个视角看大数据 如何把数据变成真正的价值
大数据是当下最时髦的话题之一,依照迈尔·舍恩伯格及库克在《大数据时代》的描述,数据被定义为不用随机分析法(抽样调查)而运用所有数据的方法。除了对于社会组织、公共服务、人们生活的重大影响之外,这一热潮背后的关注焦点,其实还是商业模式,即相关数据仓库、数据安全、数据分析、数据挖掘等围绕大数据的商业价值利用。
大数据之所以在我国引起如此大的关注,也是由于在传统文化理念中,“大概齐、差不多”的习惯深入人心,在公共决策、商业选择、个人行为中充斥着“拍脑袋”现象。正如历史学家黄仁宇在《赫逊河畔谈中国历史》所论述的那样,“西欧和日本都已以商业组织的精神一切按实情主持国政的时候,中国仍然是亿万军民不能在数目字上管理。”当然,这种模糊管理下的信息不对称,亦成为另外一种既定利益格局的存在基础。正因为此,当信息爆炸时代快速来临之时,对数据信息的渴望迅速在社会不同层面体现出来。据报,汪洋副总理就曾向广东财政厅干部推荐涂子沛写的《大数据》。
要论大数据的历史,或可追溯到19世纪末。美国统计学家赫尔曼·霍尔瑞斯为统计1890年的人口普查数据,发明了一台电动器来读取卡片上的洞数,该设备用一年时间完成了原本需耗时八年的人口普查,由此开启了数据处理的新纪元。进入21世纪,随着信息技术、云计算的高速发展,以及社交网络的普及,大数据被赋予了全新含义。应该说,基于数据化严重不足的大背景,在我国经济社会发展中强调大数据的作用,其积极意义非常深远,但与此同时,也要避免走向另外的某些极端,这就需要相应的冷思考。
比如,在大数据的推动者之中,一方面各类新兴互联网企业成为主力,另一方面传统企业也在着力跟随,其根本动力都是在于发掘新的商业利润来源,以弥补我国经济转型期的投资迷茫。在此过程中,对于个人的利益和诉求还缺乏合理的认识和定位。虽然大数据对于进一步理解和服务消费者起到重要作用,但从其他侧面看,无序的、低效的、无用的信息轰炸,往往给个人带来“信息过度”的不佳体验,而在数据成为财富的狂热驱动下,对于个人信息权利的侵犯几乎无处不在,尤其在我国缺乏个人信息保护规则的条件下,数据渴望和采集很可能成为激怒消费者的动因,且拉大了与真正的消费者主权社会的距离。
另外,更值得我们思考的是,如果信息产生基础或其环境存在问题,那么大数据的技术是否会造成更大的信息扭曲?从金融市场的角度看,大数据在深刻改变高频交易方式、信贷风险判断等环节同时,也带来了其他潜在风险的积累,如信息误读造成的市场波动突然被放大,以及难以监管的新型金融产品创新等等。可以说,在诸多领域都缺乏法律游戏规则约束,更缺乏职业道德约束的情况下,如果初始数据就存在问题,那么在此基础上的大数据分析手段,恐怕就只有“南辕北辙”的效果了。从大处说,各类统计数据造假历年来都是被舆论广泛质疑的焦点;从小处说,在很多领域数据失真已经成为常态。例如,据5月7日的《北京青年报》报道,由于受到利益绑架,北京地区的电视收视率数据或许已被污染。再如,我国赴海外留学生的国内学校成绩,就一度存在许多造假行为,直到欧美出现更严厉的制约才有所收敛。无论如何,一旦数据本身的问题太多,则带来的只有大数据的灾难。
我们知道,信息不对称的后果是扭曲了市场机制的作用,误导了市场信息,造成市场失灵。如果处在普遍的信息数据缺乏状态下,经济行为的不确定性也会增加,往往会降低市场效率。反之,是过犹不及,即便是在上世纪末所谓“信息爆炸”年代,也远不如当前阶段如此快速的信息积累。据统计,互联网上的数据每两年翻一番,而全球绝大多数数据都是最近几年才产生的。面对似乎逐渐“供大于求”的数据,如何找到有用的信息,成为利用大数据的关键问题。正如美国颇有影响力的预测专家纳特·西尔弗在《信号与噪声》一书中所分析的:“如果信息的数量以每天250兆亿字节的速度增长,其中有用的信息肯定接近于零。大部分信息都只是噪声而已,而且噪声的增长速度要比信号快得多。”由此看来,当数据信息铺天盖地而来之时,也可能距离真相越来越远。在现实中,对于一哄而上追求大数据的企业来说,也需要冷静思考下,在信息过度充分的年代,如何把数据真正变成真正的价值?
大数据如同一把双刃剑,正如不少好莱坞电影中政府对公众无所不在的监控,大数据的爆炸,也让现代人对个人信息安全失控充满了担忧。斯诺登和棱镜事件,进一步在全球范围的国家之间提出这个疑问。一方面,在不可避免地拥抱大数据时代之前,可能更需要加强对其潜在风险的认识,做好基础数据净化、个人信息保护、国家信息安全等基础性建设;另一方面,大数据既可用来推动新商业模式演进,也可用来通过“抓坏蛋”,间接促进社会信息环境的完善,从而夯实大数据根基。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11