京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析:零售业谋变新路径
只有将客户数据转化为洞察,用数据指导营销计划和销售规划的制定,才能把这些冷冰冰的数字转化为客户亲密度,将零售商与客户紧紧绑定在一起。
数据显示,截止到2013年底,中国电子商务市场交易规模达10.2万亿,同比增长29.9%。在电商呈现如火如荼之势时,传统零售业受到挤压,线上线下遭遇截然不同:客流减少、业绩不佳、甚至被迫关闭门店……实体零售业经营陷入困局。面对来自电商的强烈冲击,实体零售商也开始思索如何谋变,进行了一系列新尝试。部分不甘沦为“试衣间”的零售商勇敢试水O2O,打通线上线下渠道。来自更多渠道的数据重塑商业模式的同时,也让零售商看到了其蕴含的商业价值。数据中的丰富客户洞察也推动了“以客户为中心”的业务转型。
大数据时代,亟待突围的零售商该如何在探索中把握先机,SAS公司结合国外零售商最佳实践给出了如下建议:
以客户为中心的数据驱动营销管理,从多种渠道获得成功转型
在技术的帮助下,零售商可以通过社交媒体、移动应用、定位服务和电子邮件等更多渠道与消费者交流。更多沟通桥梁也带来了更为丰富的客户信息,而仅仅获取这些信息是不够的,只有将客户数据转化为洞察,用数据指导营销计划和销售规划的制定,才能把这些冷冰冰的数字转化为客户亲密度,将零售商与客户紧紧绑定在一起。
1.梅西百货:有的话,只想说给你听
美国著名连锁百货公司梅西百货设立电商部门Macy’s.com,希望消费者无论在哪里,都能同步享受最新上市商品和促销活动,寻找购物魔力。Macy’s.com设立了互联网客户洞察部门,利用大数据分析改进个性化营销、广告策略等方面,迅猛发展在线渠道营销,从传统的线下经营成功转型为全渠道经营模式。面对激烈的竞争,Macy’s.com亟需关于客户偏好的更精准实时决策。梅西百货认为,获取跨越全渠道的客户洞察是提高顾客满意率和营收增长的关键。为了更高效地了解和评估在线营销活动对实体店销售额的影响,Macy’s.com采用SAS解决方案大大加强分析实力,自此改变了群发通用型电子邮件的低效营销方式,对客户进行更精细的分类,针对性地发送促销邮件。出乎意料的是,邮件发送频率的降低并没有减少网站访问量,邮件退订率反而减少了20%。
2.Harry & David:尝尝分析的甜头吧
在经历了经济衰退带来的业绩下滑之后,美国美食和礼物零售商领军Harry & David利用分析技术判断谁是目标客户,目标客户希望以何种方式以及何时接收促销信息以及哪类人群最有可能驱动销售额增长,从数据中理清未来发展的思路。在开始的几个月里,营销团队在获取顾客行为和偏好方面取得进展。一年内,在客户细分、客户生命周期和并发价值分析上更进一步。三年之内,Harry & David新的客户维系率上升了14%,顾客带来的销售额也增长了7个百分点,高质量忠诚客户增加了10%。使用SAS? Campaign Management之后,Harry & David获取了更多有价值的客户洞察,例如:通过导入外部数据和分析历史交易行为,他们得出了由社交网络渠道吸引而来的客户更值得进一步培养这一结论。客户档案建模和管理也为销售情况预测提供了可靠依据。由此,Harry & David尝到了数据分析的甜头,走上了数据驱动型的营销道路。
3.Chico’s:告别猜测,和直觉说再见
成衣女装零售商Chico’s FAS Inc.在全美境内拥有超过1000家门店。除了实体店外,Chico’s还通过商品目录和在线渠道开展营销活动。在面临行业衰退时,Chico’s决定好好利用多年积攒下来的客户信息,并由此驱动商业决策。但是,现实远比想象艰难,来自于Chico’s 旗下的多个品牌数据难以整合,且公司并不具备海量数据处理能力。相较于真实可靠的客户数据,营销人员更多倚赖的是直觉。Chico’s需要一个为管理和整合海量数据提供可靠追踪记录的系统,并希望业务人员在没有数据工作人员和程序员的情况下也能使用数据。Chico’s选择了随需应变解决方案:营销自动化(SAS? OnDemand:Marketing Automation)。这是一个包含了一整套预测分析和数据挖掘工具、允许营销人员计划、测试和执行任意规模营销活动的企业级解决方案。
该解决方案帮助Chico’s策划节假日促销活动。数据显示,在使用该解决方案后,Chico’s季度利润达到1700万美元,而在上一年同一季度中,Chico’s亏损了4200万美元。在营销自动化解决方案的帮助下,Chico’s将客户进行精细分类,并区别不同推广活动达到的效果。Chico’s将目标群体划分为三类,并采取相应行动:第一类顾客为希望第一时间购买新品的消费者。这类顾客能收到包括所有尺寸和价位商品、并标注出新品的商品目录和邮件。第二类顾客是热衷于折扣商品的顾客,Chico’s向这类顾客邮寄针对性更强的更薄的商品目录和促销传单。第三类为网站用户,Chico’s向线上客户推送符合其消费偏好的电子邮件。
一旦发现销售不佳的商品,Chico’s即可迅速调整促销策略。Chico’s挽回了更多的流失客户,成功率是此前的三倍。通过大数据分析,Chico’s从过往交易记录中鉴别更受欢迎的商品,并选择相应的促销手段。作为一家拥有多个品牌的零售商,通过判断消费者喜好,如今Chico’s能够通过策划促销活动引导某一品牌忠实顾客也能会光临旗下另一品牌,带来了更多潜在销售机遇。过去需要30天才能出炉的营销计划现在只需4天就能策划完成。团队也拥有了更快创造精准营销活动的能力。
通过大数据分析,零售商可以用过往交易记录指导营销活动,创造切实符合客户所需的深入人心的营销活动,用个性化的消费体验建立更紧密的客户关系,最终促进营收增长。
洞察中的精准预测,指导策略规划
从总结过去和观察现在中预测未来,是大数据的另一魔力。这也启发了零售商从一开始的供应环节就在大数据的指导下进行精准且具有可行性的需求预测,由此优化客户的购买体验。
DSW:7码还是9码,我知道!
不同于成衣的尺码灵活性,消费者在购买鞋类时必须选择合脚的尺码,这对鞋类零售商的供应体系提出了更高要求。美国鞋业零售巨头DSW利用SAS解决方案整合采购和供货系统。有了SAS解决方案的合理分配逻辑,DSW对于尺码供应有了更精准的判断。这让“按店铺所需分配尺码(size by store)”模型开发成为可能。从前,DSW实行统一标准供货,12箱包含各个尺码鞋子的包裹被寄送到各个门店。事实上,有的门店仅仅需要7码和8码的鞋子,而它们依然会收到6码和9码的货品。数据分析能够计算出在减少促销活动并且无缺货情况下每个地区所需的特定鞋码和款式货品数量和订单补给量,确保门店内供应充足的正确尺码货品,并能实现及时补货。门店运作更为高效,顾客更少等待,满意度也大幅上升。
减少IT开支,增加系统灵活性,高性能分析技术创造更高价值
大数据的蓬勃发展催生了具有高度灵活性的技术,例如可视化分析、高性能分析和云端应用等。得益于随需应变的高度灵活的技术,零售商大大减少了IT运营的开支,并从更高级的分析中获取了更有价值的洞察。
SM-MCI:“亚洲百货之王”的分析利器
“亚洲百货之王”SM集团旗下的SM Marketing Convergence Inc.(SM-MCI)运作着全菲律宾最大的客户忠诚度计划。这一计划中记录了每一名顾客在SM集团旗下购物中心消费中所获积分的情况,存储了超过十亿次的消费记录,却并未得到有效利用。SM-MCI需要一种可以促进销售,改善运营,同时也能增进顾客忠诚度的解决方案。最终,SM-MCI选择了融合内存分析技术和商业智能高级数据可视化的SAS可视化分析(SAS? Visual Analytics)解决方案。它不仅拥有无与伦比的统计计算能力和速度,还能通过直观的方式展示分析结果。在新变量添加时也不会产生多余的数据规划和提取转化加载流程。从更加深度的报告中,SM-MCI能够更加深入地了解消费模式,并鉴别趋势,以此来及时策划促销活动,传递更优质服务,提升顾客满意度,吸引新会员加入,发现有利可图的追加销售机会。
在发达国家,电子商务的崛起早已证明其对实体零售业的强烈冲击,而国外零售商们在对抗冲击中也累积了更多经验。这些实践经验带给近年来饱受电商威胁的中国实体零售商更多思考:云服务、数据可视化和Hadoop等新兴技术在零售业落地应用并发展迅猛,为行业注入了活力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16